Segunda-feira, 23 de Fevereiro de 2009

Resolver problemas decompondo-os nas suas partes constituintes

Muitas são as estratégias que se poderão usar na resolução de problemas. Contudo, a escolha mais adequada das estratégias depende sempre do tipo de problema que se pretende resolver. Para a reflexão desta semana apresento um determinado tipo de problemas - problemas de processo - que para a sua resolução sistematizada convém que se decomponham os problemas nas suas partes constituintes.

Imagine-se desafiado a identificar todos os triângulos que é possível encontrar neste pentagrama:

Ao tentar dar resposta a este desafio encontrará, certamente, dificuldades na identificação de todos os triângulos, pois trata-se de uma figura que contempla muitas figuras desse tipo.

Um bom registo ajudará a estruturar o raciocínio. Além disto, como há vários tipos de triângulos, se a nossa atenção incidir num tipo de triângulo de cada vez, isso poderá ajudar na resolução da globalidade do problema.

De facto, problemas desta natureza exigem que a sua resolução contemple uma abordagem parcelar a cada uma das suas partes constituintes. Sendo assim, podemos começar por numerar todas as zonas triangulares de menor dimensão, o que origina, de imediato, a identificação de 10 triângulos unitários:

Temos, pois, já identificados 10 triângulos:

De seguida constata-se que o triângulo formado pelos triângulos 1 e 2 é um novo triângulo, diferente daqueles dez já identificados. Ora, centrando a nossa atenção na procura exclusiva de triângulos deste novo tipo, identificamos 10. São eles: [1,2]; [2,3]; [3,4]; [4,5]; [5,6]; [6,7]; [7,8]; [8,9]; [9,10] e [1,10]. Estão, pois, identificados 20 triângulos.

Veja-se, agora, que o triângulo formado pelos triângulos 1, 2 e 3 formam um novo triângulo. Como este há mais quatro, o que implica haver 5 triângulos deste novo tipo: [1,2,3]; [3,4,5]; [5,6,7]; [7,8,9] e [1,9,10]. Já vamos em 25 triângulos.

Repare que o triângulo formado pelos triângulos 1, 2, 6, 10, envolvendo o pentágono central, ainda não está identificado. Estamos perante um novo tipo de triângulos. Como este há mais quatro, pelo que deste tipo há 5 triângulos: [1,2,6,10]; [2,3,4,8]; [4,5,6,10]; [2,6,7,8] e [4,8,9,10]. Já contabilizámos 30 triângulos.

Por fim, ainda se pode identificar um novo tipo de triângulo, cujo exemplo pode ser o formado pelos triângulos 2, 6 e envolvendo o pentágono central. Como este há mais quatro, pelo que podem ser identificados 5 deste tipo: [2,6]; [2,8]; [4,8]; [4,10] e [6,10].

Uma vez que esta estratégia nos permitiu identificar os triângulos de cada tipo, é-nos fácil concluir, agora, que este figura permite a identificação de 35 triângulos. Além disto, esta estratégia de resolução permite identificar cada um desses 35 triângulos a qualquer momento, pelo que evita a repetição de ideias ou um certo tipo de "resolução em círculo vicioso".

Com base nesta estratégia de resolução tente identificar todos os triângulos existentes nesta nova figura:

 

publicado por Paulo Afonso às 00:06
link do artigo | comentar | favorito
|

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist