Segunda-feira, 7 de Dezembro de 2009

Utilizar o minicomputador papy para a realização de subtracções

Nos dois artigos anteriores tive a oportunidade de reflectir acerca da utilização do minicomputador papy tanto no registo de qualquer quantidade inteira, como na realização de adições envolvendo ou não transporte.

Desta vez irei evidenciar a sua importante utilização para o cálculo de subtracções com e sem empréstimo.

Vejamos o exemplo simples de se obter o resto, excesso ou diferença de 67 menos 25.

Porque o conceito de subtracção pressupõe que o aditivo vá anulando o subtractivo para que haja resto, excesso ou diferença, então teremos de recorrer a dois tipos de marcas diferentes: as do aditivo serão negras e as do subtractivo serão brancas. Na linha respeitante ao resto, excesso ou diferença começaremos por colocar a totalidade das marcas envolvidas na subtracção. vejamos a figura explicativa:

Repare-se que no resto, excesso ou diferença existem três células com os dois tipos de marcas. Logo, podem anular-se. Vejamos a figura:

Consta-se, pois, que o resultado desta subtracção é 42. De facto, 67 - 25 = 42. Assim, o esquema final será este:

Como será o caso de 67 - 35?

Façamos o esquema inicial:

Note-se que já podemos anular as marcas em três células. Contudo ainda fica uma marca do subtractivo por anular. Logo teremos de arranjar uma maneira de uma das marcas negras, colocada a representar um valor maior do que esssa marca branca, se transformar em marcas que lhe deram origem, para que se possa proceder à anulação da marca branca. Ora sabemos que a marca situada na célula dos "quarenta" se pode converter em duas marcas na célula dos "vinte". façamos esta conversão:

 

De seguida desaparece do minicomputador papy a marca dessa célula dos "quarenta" e uma das marcas da célula dos "vinte" terá de converter-se em duas marcas na célula das dezenas. Façamos esta nova conversão:

Fica, então, apenas uma marca na célula dos "vinte" e já podemos proceder à anulação da marca branca através de uma das duas marcas negras que passaram a existir na célula das dezenas. Façamos, pois, esta anulação:

Em síntese, o resto, excesso ou diferença desta subtracção é, pois, o valor 32. De facto, 67 - 35 = 32. O esquema final é, então, o seguinte:

Concluimos, assim, que este material estruturado pode ter muita utilizade na realização de subtracções simples, onde não haja a necessidade de envolver o conceito do empréstimo. Contudo, como poderá utilizar-se este material para a seguinte subtracção: 67 - 19?

Façamos o esquema inicial:

Constata-se que em apenas uma célula é possível fazer uma anulação de imediato:

A marca que vale 20 tem de se converter em duas de valor 10 devido à marca branca que está situada na célula dos grupos de dez:

Pode-se agora anular essa marca branca:

De seguida, a marca negra que ainda existe na célula dos grupos de dez terá de ser convertida em 8 + 2, devido à marca branga que vale 8:

Anulemos, então, a última marca branca:

Após a anulação de todas as marcas brancas convém ver se o que resta pode ficar como está ou se ainda carece de alguma alteração. Eis o que resta:

Ora, como sabemos que uma célula só pode ter uma carca de cada cor, significa que as duas marcas na célua do 2 terão de originar uma nova marca na célula do 4. Vejamos o esquema:

Por sua vez, ao haver algora duas marcas na célula do 4 deverão originar uma marca n acélula do 8:

Logo, o esquema final terá como rexultado o valor 48. De facto, 67 - 19 = 48. Eis o esquema final:

 

Teste, agora, este material na seguinte subtracção: 125 - 66.

publicado por Paulo Afonso às 00:04
link do artigo | comentar | favorito
|

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist