Terça-feira, 18 de Maio de 2010

Problemas que desenvolvem o pensamento algébrico

Desde a década de 90 do século passado que o tema da resolução de problemas tem sido considerado, de forma explícita, como um contexto de aprendizagem propício ao desenvolvimento do raciocínio dos alunos. Neste artigo pretendo evidenciar como a escolha de alguns problemas pode contribuir para que se desenvolva a temática do pensamento algébrico.

 

Vou partir de um enunciado, adaptado de um excelente livro de Vivien Lucas, intitulado "Um Problema por Dia"*, cujo texto é o seguinte: "A Letícia Triângulo estava a aprender a tocar piano. Decidiu praticar durante 5 minutos no 1º dia, 15 minutos no 2º dia, 25 minutos no 3º dia e assim sucessivamente." (p. 93).

 

Qual o dia que ela começou a praticar mais de metade do dia?

 

* - Lucas, V. (2003). Um Problema por Dia. Lisboa. Replicação.

 

Este problema obriga a que se relacione o número do dia, em termos de números ordinais, e o tempo gasto a treinar piano:

 

1º dia - 5 minutos

2º dia - 15 minutos

3º dia - 25 minutos

 

Além disto, teremos de calcular quantos minutos estão implícitos em metade do dia, isto é, em 12 horas. Ora 12 x 60 = 720 minutos. É este o tempo de treino correspondente a metade de um dia.

  

Uma tabela poderá ajudar a sistematizar o que se conhece:

  

Dia                       Tempo Gasto (minutos)
1º                      5
2º                      5 + 1 x (2 x 5) = 15
3º                      5 + 2 x (2 x 5) = 25

 

 

 

  

Tendo em conta a tabela anterior seria desejável que me contexto de sala de aula os alunos concluíssem que o 4º dia já implicava 5 + 3 x (2 x 5) minutos, isto é, 35 minutos de treino de piano.

 

Dando continuidade a outros exemplos, facilmente se chega à lei geral em que o número do dia (d) é igual à soma de 5 com o produto de o número de dias menos um (d - 1) por dez, isto é: d = 5 + (d - 1) x (2 x 5).

 

Ora, uma estimativa interessante para se chegar ao valor de 720 minutos, corerspondente a 12 horas de treino diário seria o valor 72º dia, pois se d = 72 implica que 5 + (d - 1) x (2 x 5) = 5 + 71 x 10 = 715 minutos. Ora, este valor fica ligeiramente abaixo do valor esperado, pelo que se justifica testar para o 73º dia. Assim sendo, 5 + (d - 1) x (2 x 5) = 5 + 72 x 10 = 725 minutos. Será, pois, a partir do 73º dia que a Letícia treinará mais do que metade do dia.

 

Imagine-se que a sua amiga, Joana Quadrado, também estava a iniciar o seu treino de piano e decidiu treinar por dia o dobro do tempo que a Letícia treinava, começando em 10 minutos no 1º dia. Será que precisaria de metade dos dias da Letícia para passar a treinar pelo menos metade do dia?

 

Sabendo isto, a irmã gémea da Joana, de nome Rita Quadrado, decidiu fazer um plano de treino, cujos tempos diários eram sempre o dobro da sua irmã. De quantos dias precisará para começar a treinar mais do que metade do dia? 

publicado por Paulo Afonso às 02:01
link do artigo | comentar | favorito
|

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist