Terça-feira, 1 de Junho de 2010

Geometria algebrizada - o caso das áreas de quadrados

Conectar vários conceitos matemáticos entre si tem sido uma forte aposta deste blog. Ora, neste centésimo artigo deste espaço da blogosfera pretendo voltar ao tema das conexões matemáticas por forma a elucidar, com um exemplo mais, a importância desta concepção acerca da Matemática.

 

O exemplo que escolhi tem a ver com o cálculo de áreas pelo método da decomposição passando, depois, pela sua exploração algébrica. Vejamos a figura seguinte e calculemos a área do quadrilátero de lado "a", tendo em conta que a unidade de área é a área ocupada pelo menor quadrado que faz parte da malha quadrada onde esse quadrilátero se encontra:

 

Ora, como se trata de um quadrado com 14 quadrículas de lado, tem de área 14 x 14 = 196 unidades de área. Isto é, como a = 14, então a área da figura é a2 = 142 = 196.

 

Analisemos, de seguida a figura de lado "b" e calculemos a sua área:

 

Um processo simples de realizar o cálculo é decompor a figura inicial, de lado "a" em 4 quadriláteros:

 

Note-se que a figura de lado "b" ocupa sempre metade de cada um dos quatro quadriláteros em que a figura de lado "a" foi decomposta. Logo, podemos concluir que a área da figura de lado "b" é metade da área da figura de lado "a", isto é, 98 unidades de área.

 

Em termos algébricos seria interessante que os alunos concluíssem que o lado do quadro menor - lado "b" - é a hipotenusa do triângulo rectângulo isósceles de lado "a/2". Logo, aplicando-se o Teorema de Pitágoras, conclui-se que b2 = (a/2)2 + (a/2)2 = a2/4 + a2/4 = 2a2/4 = a2/2. Em síntese, a igualdade b2 = a2/2 significa que a área do quadradado de lado "b" é metade da área do quadrado  de lado "a".

 

Qual será a área do quadrado de lado "c", comparativamente à área do quadrado de lado "a"?:

 

 

O Quadrado de lado "c" tem de lado 7 quadrículas unitárias. Logo, a sua área é 72 = 49 unidades de área. Note-se que esta área é metade da área do quadrado de lado "b" e quarta parte da área do quadrado de lado "a".

 

 

Em termos algébricos, e tal como a figura sugere, o comprimento do lado "c" é metade do comprimento do lado "a", isto  é: c = a/2. Logo, o cálculo da área do quadrado de lado "c" é a seguinte: a/2 x a/2 = a2/4. Daqui conclui-se que a área do quadrado de lado "c" é a quarta parte da área do quadrado de lado "a". Logo 196 : 4 = 49 unidades de área.

 

Analisando-se estes três casos, consta-se a existência de um padrão ou regularidade:

 

quadrado de lado "a" - sua área é a2

quadrado de lado "b" - sua área é a2/2

quadrado de lado "c" - sua área é a2/4

 

Tendo em conta esta regularidade, é admissível que surja a estimativa de que a próxima figura terá de área a/8, isto é, será um oitavo da área da figura do quadrado de lado "a" ou metade da área da quadrado de lado "c". Eis a figura respectiva:

 

 

Confirma-se, pois que a área do quadrado de lado "d" é metade da área do quadrado de lado "c", isto é, 24,5 unidades de área, como mostra a decomposição seguinte:

 

 

Note-se que conseguimos identificar 14 quadrículas inteiras, mais 10 por junção de quadrículas adjacentes, mais meia quadrícula que é a que resulta dos quatro triângulos assinalados a vermelho. Logo, a área da figura de lado "d" é 24,5 unidades de área.

 

Voltando à regularidade acima assinalada, podemos acrescentar esta nova linha:

 

quadrado de lado "a" - sua área é a2

quadrado de lado "b" - sua área é a2/2

quadrado de lado "c" - sua área é a2/4

quadrado de lado "d" - sua área é a2/8

 

Dando continuidade a esta regularidade, qual será a área do oitavo quadrado? 

publicado por Paulo Afonso às 00:16
link do artigo | comentar | favorito
|
3 comentários:
De Mari N a 1 de Junho de 2010 às 13:44
Superrrrrrrrr showwwwwwwwwwww!!! A matemática é lindaaa!!!! *___*

De Camila Delmondes a 14 de Julho de 2010 às 15:27
No Ano Internacional da Biodiversidade, o Museu Exploratório de Ciências (MC) da Universidade Estadual de Campinas (Unicamp) realiza no dia 12 de agosto, em Campinas, o fórum “Biodiversidade em perspectiva: patrimônio genético, patentes e pirataria”. Afinal, a quem deve pertencer os royalties das descobertas científicas no Brasil e no resto do mundo?
O evento é gratuito e acontece no Auditório do Centro de Convenções da Unicamp (CDC) das 9 às 17 horas. Podem participar pesquisadores, professores, estudantes e demais interessados no assunto. As inscrições devem ser realizadas no site www.cgu.unicamp.br até o dia 10 de agosto.
De Clebson Gustavo. a 4 de Novembro de 2010 às 08:24
Olá,
as áreas são:
1º a² = 196
2º a²/2= 98
3°a²/4=49
4ºa²/8=24,5
5ºa²/16=12,25
6ºa²/32=6,125
7ºa²/64=3,0625
8ºa²/128 = 1,53125

Abraços...

Comentar artigo

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist