Sexta-feira, 10 de Setembro de 2010

Kakuro e pensamento aritmético

No artigo anterior tive a oportunidade de me debruçar sobre a potencialidade que o jogo do Sudoku tem ao nível do desenvolvimento da comunicação matemática de quem seja solicitado a explicar oralmente e/ou por escrito o preenchimento numérico das células vazias de cada conjunto de números naturais consecutivos. Para o artigo desta semana continuo a dedicar atenção a mais um jogo de desenvolvimento do raciocínio lógico-matemático, de nome Kakuro. Como refere Moore* (2005), "O nome kakuro resulta da contracção da palavra japonesa «adição» com a pronunciação japonesa da palavra inglesa «cross», que em português significa cruzar" (p. 7). Em síntese, poder-se-á dizer que se trata de um jogo de "somas cruzadas".

  

* - Moore, G. (2005). O Livro do Kakuro. Queluz de Baixo: Editorial Presença.

  

Vejamos um exemplo, extraído do livro supra referido:

  

 

Para se perceber melhor o que é necessário fazer-se, vamos centrar a nossa atenção apenas nas cinco células vazias do canto superior esquerdo da figura: 

 

 

As setas indicam o sentido em que estas células têm de estar afectas aos números "pista" que são fornecidos. Sendo assim, a seta superior horizontal indica que as duas células que estão à direita do valor 3 terão de conter dois números naturais não repetidos, cuja soma seja 3. Por sua vez, a seta horizontal de baixo indica que as duas células à direita do 4 terão de ser preenchidas com dois números naturais, diferentes entre si, cuja soma seja 4. Contudo, o desafio de se preencherem estas quatro células não pode deixar de ter em consideração as setas verticais, isto é, a seta vertical da esquerda indica que por baixo do valor 4 terão de ser colocados dois números naturais diferentes entre si, cuja soma seja 4. Por sua vez, a seta vertical da direita indica que as tês células existentes por baixo do 7 terão de ser preenchidas por três números naturais diferentes entre si, cuja soma será precisamente o valor 7.

 

Tendo em conta todas as condições acabadas de descrever, eis que apenas uma das duas possibilidades de resolução é correcta, por nunca repetir os números numa mesma adição. Trata-se da figura da direita:

 

 

Note-se que na figura da esquerda para a segunda adição horizontal repete o valor 2, o que não é permitido neste jogo. Sendo assim, a figura inicial poderia ser preenchida nesta parte:

 

 

Centremos agora a nossa atenção numa outra parte da figura, designadamente na sua parte direita:

 

 

Tendo em conta as várias adições horizontais e verticais a fazerem-se, eis uma possível solução para a parte superior desta figura:

  

 

  

Continuando, facilmente se percebe que em termos de raciocínio aritmético se deve afectar o valor 8 à soma 24. Por outro lado, a quadrícula do canto inferior direito também é de fácil preenchimento:

 

 

 

Agora torna-se fácil sugerir o valor 3 para o que resta da adição vertical de soma 6:

 

 

  

Centremo-nos, agora, numa outra parte da figura, o canto inferior esquerdo:

 

 

Uma vez mais, cruzando as duas somas horizontais com as duas somas verticais, eis uma possível solução:

 

 

Transportemo-la para a figura inicial:

 

 

 

Restam apenas os quatro valores centrais. Estes estão dependentes simultaneamente de duas adições horizontais cujas somas são, respectivamente, 8 e 6, bem como de duas adições verticais cujas somas são, respectivamente, 11 e 12. No caso da soma horizontal de valor 8 já existe uma parcela de valor 4, faltando apenas o preenchimento de duas parcelas cujo valor total terá de ser também 4. Não se podendo repetir o valor 2, pode optar-se por se colocar o valor 1 e o valor 3:

 

  

Por sua vez, para a soma 12 vertical falta o valor 1:

 

 

 

 Por fim, para a soma vertical 11 e para a horizontal 6 falta apenas o valor 2:

 

 

 

Confirma-se, pois, que cada soma tem as suas respectivas parcelas correctamente preenchidas.

 

Com base nesta análise preencha o jogo seguinte, extraído, igualmente da obra de Moore supra citada:

 

 

 

publicado por Paulo Afonso às 01:08
link do artigo | comentar | favorito
|
1 comentário:
De Clebson Gustavo. a 2 de Novembro de 2010 às 17:28
Esses que possuem desenho e melhor criar uma imagem pra melhor ver a resposta.
Aí segue o link:
http://commondatastorage.googleapis.com/static.panoramio.com/photos/original/43125511.jpg

Abraços...

Comentar artigo

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist