Sexta-feira, 24 de Setembro de 2010

Hexágonos mágicos

As figuras mágicas já foram objecto de análise neste blog por variadíssimas ocasiões. Desta feita vou socorrer-me de uma figura geométrica muito apreciada no seio da Matemática, que é o hexágono regular. Muito se poderia dizer acerca deste tipo de figura, desde logo a sua associação ao importante labor das abelhas é algo que surpreende cada um de nós.

  

Do ponto de vista geométrico, a sua capacidade de gerar planificações perfeitas é um dos aspectos de maior relevo no seu estudo. Contudo, não será sobre estes aspectos que irei incidir a minha reflexão. Vou, antes, utilizar os hexágonos regulares para se fazer uma exploração ao nível das figuras e das somas mágicas.

  

O objectivo é colocar alguns dos números de 1 a 9 nos seis triângulos equiláteros que formam a figura seguinte, não se podendo repetir qualquer destes números, por forma a obter-se a soma mágica 25:

  

 Duas soluções possíveis são as seguintes:

  

     

Numa tentativa de decomposição do 25 em seis parcelas todas diferentes, seria desejável que em contexto de sala de aula de Matemática surgissem mais dois casos de sucesso:

 

   

Com estes quatro exemplares poder-se-iam explorar diversas situações de recreação matemática. Contudo, o desafio é o de se usarem estes quatro módulos para se proceder à pavimentação ilustrada na figura seguinte (um novo hexágono regular), tendo, para tal, que redistribuir os valores em cada um destes quatro módulos para que a soma em cada hexágono se mantenha no valor 25:
 

 

Eis uma solução possível:

 

 

 

 

Como se pode verificar cada hexágono mantém a soma 25.

 

Proceder de igual modo para o preenchimento de um novo hexágono mágico (desta vez é um irregular), de soma 25 em cada módulo hexagonal:

 

 

 

 

 

 

publicado por Paulo Afonso às 00:07
link do artigo | comentar | favorito
|
2 comentários:
De Letícia a 5 de Outubro de 2010 às 15:08
Olá amigos, deixo aqui a minha dica:

A Rede de Popularização da Ciência e da Tecnologia da América Latina e do Caribe (Red-POP) recebe até 15 de novembro, propostas de trabalho para a 12ª Reunião Bienal que acontece no Brasil, organizada pelo Museu Exploratório de Ciências (MC), da Universidade Estadual de Campinas (Unicamp), de 29 de maio a 2 de junho de 2011.

Com o tema “A profissionalização do trabalho de divulgação científica”, o encontro aceitará tanto trabalhos de pesquisa, de caráter acadêmico, quanto de profissionais da área, interessados em relatar suas experiências. Cinco eixos temáticos vão nortear a 12ª Reunião: Educação não-formal em ciências; Jornalismo científico; Programas e materiais para museus de ciências: materiais e práticas concretas; Museografia e museologia científica; Público, impacto e avaliação dos programas.
De Clebson Gustavo. a 2 de Novembro de 2010 às 16:29
Veja minha resposta no link abaixo:
http://commondatastorage.googleapis.com/static.panoramio.com/photos/original/43122773.jpg

Abraços e excelente blog.

Comentar artigo

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist