Segunda-feira, 3 de Janeiro de 2011

Pensamento algébrico - à procura de generalizações

O pensamento algébrico é um assunto que pode suscitar variadas actividades de recreação matemática. Desde sequências lacunadas muito simples a deduções de leis gerais que definem o comportamento matemático de um fenómeno de natureza geométrica ou numérica, muitas são a explorações a fazer.

  

O exemplo que trago para reflexão assenta em figuras de natureza geométrica que obedecem a um determinado tipo de regularidade ou padrão de crescimento. Qual será a figura que dará continuidade a esta sequência de figuras?

 

 

Como a pergunta é de natureza geométrica, será muito fácil perceber-se que a próxima figura terá de ter uma nova fronteira de quadrados que respeita a colocação das "fronteiras" anteriores, isto é:

 

 

Contudo, outro tipo de estratégia de resolução poderia passar pela contagem dos quadrados unitários existentes em cada figura anterior. O objectivo seria o de se verificar se existia algum tipo de regularidade, de modo a que fosse mais fácil continuar essa eventual regularidade.

 

Façamos a contagem: 1, 5, 13, 25,...

 

Esta sequência numérica permite que relacionemos os vários números da seguinte forma:

 

1 = 1 + 0 x 4

5 = 1 + 1 x 4

13 = 1 + 3 x 4

25 = 1 + 6 x 4

 

Verifiquemos o tipo de números que estão a multiplicar o factor 4. Exceptuando o 1º caso, os números 1, 3  e 6 fazem parte da sequência de números triangulares, tema ao qual já dediquei alguns artigos neste blog. Como sabemos, a lei geral que gera este tipo de números figurados (f) é a seguinte: f = (n2 + n) : 2. Logo, substituindo o "n" por 4, por ser a 5ª figura, o valor de "f" será o seguinte: (42 + 4) : 2 = 10. Sendo assim, a próxima figura teria 1 + 10 x 4 quadradinhos unitários, isto é, 41 quadradinhos:

 

 

Como confirmação, e atendendo às cores, temos, pois, 1 + 4 + 8 + 12 + 16 = 45 quadradinhos unitários. Sendo assim, qual será a lei geral que nos permite obter o número de quadradinhos de qualquer figura que dê continuidade a estas?

 

Pela exposição acima, o total de quadradinhos (t) de uma figura deste tipo resulta da seguinte lei geral: t = 1 + [(n2 + n) : 2] x 4, sendo "n" o número de ordem da figura que se pretende investigar menos uma unidade. Isto é, se a figura a estudar for a 20ª, o valor der "n" será 19, o que dará o valor do 19º número triangular.

 

Sendo assim, qual o total de quadradinhos que compõem a 9ª figura deste tipo? Aplique a generalização acabada de inferir e confirme com a construção da figura.

publicado por Paulo Afonso às 01:13
link do artigo | comentar | favorito
|
1 comentário:
De Mande Bem no Enem a 17 de Fevereiro de 2011 às 18:42
Olá, gostamos do conteúdo de seu blog! Você conhece o Mande Bem no Enem? Visite nosso blog e deixe sua opinião. Sugestões são muito bem-vindas!
Obrigado.

Comentar artigo

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist