Sábado, 17 de Março de 2012

Sequência numérica enigmática

Este blog tem dedicado alguma atenção às regularidades numéricas, pois são um ente matemático muito interessante para o desenvolvimento de relações matemáticas associadas ao pensamento algébrico.

 

Para esta minha nova reflexão escolhi a seguinte sequência:

 

1     9     36     100     225

 

O desafio será o de se perceber se existe algum tipo de regularidade neste conjunto de números. A existir alguma regularidade, sugere-se, de seguida, que se proponha o próximo elemento da sequência.

 

Uma análise cuidada a cada elemento da sequência leva-nos a concluir que todos são números quadrados:

 

12     32     62     102     152

 

Tendo em conta que esses números quadrados podem ser vistos como sendo potências de expoente 2, centremo-nos apenas nos valores das bases dessas potências. Assim sendo, facilmente nos poderemos aperceber de que os valores dessas bases fazem parte de uma outra sequência numérica muito interessante - sequência dos números triangulares.

 

Como poderá ser confirmado em outros artigos deste blog, a sequência de números triangulares é gerada pela seguinte lei geral (n2 + n) : 2, sendo "n" pertencente ao conjunto dos números naturais.

 

Tendo em consideração esta observação, será fácil dar continuação à sequência numérica, pois o número da base da próxima potência será o 6º número triangular: (62 + 6) : 2 = 21.

 

Logo, 212 dará continuidade à sequência numérica, ficando esta assim:

 

 

1     9     36     100     225    441

 

Contudo, em sala de aula de matemática seria interessante que os alunos pudessem constatar que cada elemento da sequência original, como número quadrado que é, poderia ser obtido da seguinte forma:

 

1 = 12

9 = (1 + 2)2

36 = (1 + 2 + 3)2

100 = (1 + 2 + 3 + 4)2

225 = (1 + 2 + 3 + 4 + 5)2

 

Logo, o próximo número resultaria de (1 + 2 + 3 + 4 + 5 + 6)2, ou seja, 441.

 

Por sua vez, também seria interessante que algum aluno pudesse associar cada um destes números quadrados à soma de vários números cúbicos, pois:

 

1 = 13

9 = 13 + 23

36 = 13 + 23 + 33

100 = 13 + 23 + 33 + 43

225 = 13 + 23 + 33 + 43 + 53

 

Sendo assim, o próximo número da sequência continuará a ser uma soma de vários números cúbicos: 13 + 23 + 33 + 43 + 53 + 63 = 441.

 

Se atendermos agora a dois quaisquer números consecutivos desta sequência e os subtrairmos, isto é ao maior subtraímos o menor, que tipo de números se obtêm? Serão eles também números enigmáticos, isto é, que despertam a nossa curiosidade em estudá-los? Poderão ser associados a algum tipo de figura geométrica? Poderão ser conectados a outros conceitos matemáticos, como sejam os números ímpares? 

publicado por Paulo Afonso às 12:12
link do artigo | comentar | favorito
|
4 comentários:
De José Filipe a 17 de Março de 2012 às 19:32
Só consigo ver o cubo como sendo a figura geométrica associada a estes números. A diferença resulta sempre num número cúbico, uma vez que é um número cúbico que adicionamos para obter o seguinte termo da sucessão.
Tantas relações que os números nos escondem...
Grande proposta didática.
De Paulo Afonso a 17 de Março de 2012 às 20:37
Obrigado pela simpatica resposta, meu grande amigo!
De filadelfo a 29 de Março de 2012 às 02:36
seu blogue é muito bom, queria saber mais sobre a criação de seu blog, se você puder mandar noticias eu agradeço.
De Paulo Afonso a 1 de Junho de 2012 às 16:55
Obrigado pelo elogio! Em que é que lhe posso ser útil?

Comentar artigo

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist