Sábado, 21 de Abril de 2012

Dízimas infinitas periódicas enigmáticas

O tema das dízimas infinitas periódicas já foi objeto de análise neste blog por ser um tema que pode servir de base a interessantes investigações matemáticas. Desta vez vou conectá-lo ao tema das regularidades numéricas e ao desenvolvimento do pensamento algébrico.

 

Para tal, começo por desafiar os meus leitores a investigarem se há algo de comum no conjunto das seguintes dízimas infinitas periódicas seguintes:

 

0,(142857)

0,(285714)

0,(428571)

0,(571428)

0,(714285)

0,(857142)

 

 

Provavelmente será fácil perceber-se que existe uma regularidade nos seis dígitos que compõem o período de cada uma das dízimas, pois são sempre os mesmos, mas dispostos em posições diferentes.

 

O desafio seguinte será o de se investigar para cada caso a fração que lhes dá origem.

 

Em contexto de sala de aula de matemática seria interessante que os alunos pudessem recorrer ao artifício matemático explorado neste blog sobre este assunto. A referência eletrónica do respetivo artigo é a seguinte: http://recreamat.blogs.sapo.pt/32824.html

 

Recorrendo a esse artifício vamos, passo a passo, descobrir a fração simplificada que dá origem à primeira dessas dízimas infinitas periódicas. Vejamos:

 

x = 0,(142857) <=>

<=> 1000000x = 142857,(142857) <=>

<=> 1000000x - x = 142857,(142857) - 0,(142857) <=>

<=> 999999x = 142857 <=>

<=> x = 142857 : 999999 <=>

<=> x = 15873 : 111111 <=>

<=> x = 5291 : 37037 <=>

<=> x = 1 : 7

 

Logo, a fração que dá origem à dízima infinita periódica 0,(142857) é 1/7.

Vamos fazer um procedimento idêntico para o caso da segunda dízima. Vejamos:

 

x = 0,(285714) <=>

<=> 1000000x = 285714,(285714) <=>

<=> 1000000x - x = 285714,(285714) - 0,(285714) <=>

<=> 999999x = 285714 <=>

<=> x = 285714 : 999999 <=>

<=> x = 31746 : 111111 <=>

<=> x = 10582 : 37037 <=>

<=> x = 2 : 7

 

Fica, pois, encontrada a fração 2/7 como origem da dízima infinita periódica 0,(285714). Ora, em contexto de sala de aula de matemática seria interessante que os alunos descobrissem os restantes números racionais que originam as restantes dízimas infinitas periódicas:

 

0,(142857) = 1/7

0,(285714) = 2/7

0,(428571) = 3/7

0,(571428) = 4/7

0,(714285) = 5/7

0,(857142) = 6/7

 

Centremos agora a nossa atenção no período da primeira dízima: 142857. Multiplicando este valor por 7 origina-se o valor 999999. Contudo se o multiplicarmos por 14, o produto obtido já será 199998 e se o multiplicarmos por 21, o produto obtido será 2999997.

 

Tendo em conta estas três multiplicações, infira, sem recurso à operação inversa da multiplicação, qual o fator que se deve multiplicar pelo valor 142857 para se obter o produto 499995. Qual o raciocínio por si empregue?

 

E para o produto 6999993, qual o fator a multiplicar por 142857? Que regularidades podem ser detetadas neste conjunto de multiplicações?

 

Nota: Sobre este assunto aconselho uma leitura complementar no blog do meu colega e amigo José Filipe: http://maismat.blogspot.pt/2011/02/um-setimo.html

publicado por Paulo Afonso às 18:08
link do artigo | comentar | favorito
|

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist