Terça-feira, 12 de Agosto de 2008

Enunciados poderosos

A Matemática Recreativa é fértil em apresentar desafios cujos enunciados requerem uma atenção especial. Muitas são as investigações em Educação Matemática onde se tem vindo a constatar que algum do insucesso na resolução de problemas passa por uma incorrecta interpretação dos respectivos enunciados. Veja-se um caso bem conhecido, como o seguinte:

"Se um tijolo pesa um quilo mais meio tijolo, quanto pesa tijolo e meio?"

 

Esta situação, transportada para a sala de aula pode servir de base para a exploração de vários conceitos matemáticos, como seja a estratégia do esquema ou figura ou a introdução às equações lineares. Tudo depende do público-alvo em questão.

No caso vertente, este desafio requer uma atenção muito cuidada ao nível da leitura e interpretação do enunciado, aliás, recomendação primeira no modelo de resolução de problemas proposto por Polya.

Uma primeira preocupação do resolvedor deverá ser a identificação do peso de um tijolo. Ora, esta informação está no enunciado, pois refere que "um tijolo pesa um quilo mais meio tijolo".

No fundo, o recurso a um bom esquema ou a uma boa figura pode ilustrar esta igualdade:

 

De seguida importa ver se há coisas iguais nos dois pratos da balança. De facto, se se considerar que um tijolo inteiro é formado pelas suas duas metades, há metade de um tijolo em cada prato da balança, que pode ser retirado:

Retirando essa componente comum aos dois pratos, constata-se que a balança continua em equilíbrio, pelo que metade de um tijolo pesa um quilo:

Assim, se metade de um tijolo pesa um quilo, um tijolo inteiro pesa dois quilos e tijolo e meio pesa três quilos.

Fica, pois, provado que este desafio pode servir para introdução do conceito de equação linear e permite, por outro lado, valorizar uma das muitas e importantes estratégias de resolução de problemas, que é a do esquema ou figura.

Este exemplo permite pensar-se em outros do mesmo tipo, como seja: "Se um animal pesa 140 quilos mais um terço do seu peso, qual é o seu peso total?"

 

 

publicado por Paulo Afonso às 00:43
link do artigo | comentar | favorito
|

mais sobre mim

pesquisar

 

Traduzir Blog


Visitas ao segundo

artigos recentes

Teia numérica

Xavier e o pensamento alg...

Dos pares ordenados ao pe...

À procura de regularidade...

Dar sentido aos números

Conexões matemáticas envo...

Dízimas infinitas periódi...

Do Futebol à Matemática

Sequência numérica enigmá...

União de Blogs de Matemát...

Calendários escritos em d...

Relógios matemáticos

Números oblongos e invest...

Conexão matemática entre ...

Conexão matemática entre ...

Conexões matemáticas envo...

Problemas de lógica envol...

Sequências numéricas cont...

Magia matemática envolven...

Números figurados em disp...

Comunicar em Matemática

Xavier e a Magia Matemáti...

Somas cruzadas

Utilização da Matemática ...

Pentágonos em relação alg...

Das regularidades numéric...

Pensamento algébrico - à ...

De volta ao número nove

Cubos mágicos

Pirâmides numéricas

Conexões matemáticas entr...

Pontes geométricas - cone...

Hexágonos mágicos

Dependência numérica - um...

Kakuro e pensamento aritm...

Sudoku e comunicação mate...

Geometria algebrizada - o...

Problemas que desenvolvem...

Triângulos mágicos de 9 n...

Conexões matemáticas e pe...

Regularidades envolvendo ...

A Matemática nos truques ...

Padrões de repetição e pa...

Investigações matemáticas...

Operar com números pares

Análise numérica de padrõ...

Figuras mágicas e tarefas...

Um caso prático de número...

Dos problemas aos conceit...

Explorando o factorial do...

Prazer matemático

Cortesía de AoPS

palavras-chave

todas as tags

links

Traduzir


Get Your Own Scroller

Contador

Web Counter

Janeiro 2013

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Pessoas on-line

online

Publicidade

Este Blog é membro do União de Blogs de Matemática


"

MusicPlaylist