Saltar para: Post [1], Comentários [2], Pesquisa e Arquivos [3]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Regularidades envolvendo quadrados coloridos

Março 16, 2009

Paulo Afonso

Imaginemos que o módulo de mosaico quadrado, formado por quadrados, representado na figura seguinte, servia como unidade de pavimentação:

Uma possível pavimentação seria criada  a partir da junção de quatro desses módulos:

Se em vez de quatro se juntassem dezasseis módulos, a pavimentação resultante seria a seguinte:

Analisando-se o número de quadrados azuis (Z) e de quadrados amarelos (A) envolvidos em cada caso, bem como o total de quadrados (Q), constatam-se algumas regularidades:

Q Q Q
9 36 144
Z A Z A Z A
5 4 20 16 80 64

1ª - o número de quadrados azuis é sempre maior do que o número de quadrados amarelos;

2ª - o total de quadrados é sempre um número quadrado (9 = 32; 36 = 62 e 144 = 122);

3ª - de caso para caso o número de quadrados azuis ou amarelos aumenta quatro vezes;

4ª - o nº de quadrados amarelos é sempre uma potência de base dois, com expoente par (4 = 22; 16 = 24 e 64 = 26).

Com base nestas regularidades qual será o aspecto de uma pavimentação semelhante a estas, que tenha 210 quadrados amarelos, isto é, quantos serão os quadrados azuis e qual o total de quadrados envolvidos?

Imagine-se um outro tipo de pavimentação que também recorre aos quadrados amarelos e azuis, cujo modelo é o seguinte:

Uma pavimentação ligeiramente maior pode ser a seguinte:

Tendo em conta o número de quadrados amarelos (A), quadrados azuis (Z) e o total de quadrados (Q) em cada caso, refira estes valores para uma nova pavimentação, semelhante a estas, cuja linha central é formada por 11 quadrados amarelos e 10 azuis.

1 comentário

Comentar post

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"