Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

A Matemática nos truques de cartas

Março 27, 2010

Paulo Afonso

Uma das actividades que costuma ter mais impacto em contexto de matemática recreativa é a que recorre a um normal baralho de cartas. Este objecto lúdico possibilita a criação de cenários de magia matemática, permitindo que um qualquer "mago", mais ou menos experiente na arte da prestigiditação possa deslumbrar os seus interlocutores.

 

Por norma, quando um bom truque tem êxito junto de uma audiência, esta sente uma curiosidade imediata em pretender saber a causa ou a razão do seu sucesso. Ora, muitas vezes a causa tem a sua origem na Matemática. O exemplo que apresento a seguir dá conta da importância da Matemática nessa área da magia com cartas:

 

Colocam-se 21 cartas viradas para cima em três montes de 7 cartas cada um. De seguida escolhe-se uma dessas cartas, revelando-se apenas o monte a que ela pertence. O "mago" coloca o monte onde está essa carta no meio dos outros dois montes e de seguida volta a dispor as 21 cartas em três montes com 7 cada. Este pergunta ao seu interlocutor em que monte se encontra a carta por si escolhida. Após resposta deste, o "mago" volta a colocar o monte das cartas, onde está a seleccionada, no meio dos outros dois montes e repete uma última vez o processo, isto é, volta a dispor as cartas em três montes e volta a perguntar em que monte se encontra a carta seleccionada pelo seu interlocutor. Após ouvida a resposta, volta a colocar o monte a que pertence esta carta no meio dos outros dois montes. Vira as cartas para baixo e faz sair uma carta por cada letra da seguinte frase, que vai dizendo em voz alta: "É esta a carta". A última carta a ser saída será a carta seleccionada pelo seu interlocutor.

 

Experimente esta tarefa várias vezes e tente encontrar uma explicação para o ocorrido.

 

Este fascinante truque de cartas tem uma explicação de natureza matemática. Em contexto de sala de aula os alunos deveriam encará-lo como sendo uma tarefa de investigação, de modo a descobrirem a causa da sua ocorrência. Assim, a figura seguinte visa evidenciar uma possível explicação para este truque. Para tal vamos centrar a nossa atenção, por exemplo, no monte do meio e na primeira carta desse monte, isto é, na carta nº 8:

 

 

De seguida colocarmos o monte a que pertence a nossa carta seleccionada entre as cartas do monte A e as cartas do monte C e voltamos a distribuí-las pelos três montes de acordo com o esquema da figura seguinte:

 

 

Neste caso, a carta seleccionada ficou posicionada na terceira linha da coluna B. Ora, voltamos a colocar este monte de cartas entre o monte de cartas A e o monte de cartas C. Ao distribuí-las pela última vez, e de acordo com o mesmo critério anterior, eis onde fica posicionada a nossa carta:

 

 

Verifica-se que a carta seleccionada ficou posicionada na quarta linha do monte A. Então, para se revelar a carta junto do nosso interlocutor, o que há a fazer e colocar o monte da carta seleccionada entre o monte C e o monte B. Ao fazermos isto, virando as cartas para baixo, a carta seleccionada, e mantida em segredo, será descoberta ao dizer-se a última letra da seguinte frase: "É esta a carta".

 

Este é, pois, um possível estudo para o caso de a carta seleccionada ser a primeira do monte central, isto é, a oitava carta. Como será a solução no caso e a carta a seleccionar ser a segunda do monte central, isto é, a 9ª carta?

 

 

A tabela seguinte evidencia cada movimento das cartas, bem como o poscionamento da carta seleccionada:

 

InícioApós voltar as distribuir as cartas   Após voltar a distribuir as cartas

 

Note-se a curiosidade de a carta escolhida desta vez voltar a ficar posicionada no mesmo local da carta seleccionada da primeira vez. Será sempre assim com as restantes cartas deste monte central?

 

A tabela seguinte visa evidenciar o estudo feito para as cinco restantes cartas deste monte:

 

InícioApós voltar a distribuir as cartasApós voltar a distribuir as cartas
  
   

 

Analisando-se a tabela anterior constata-se que o posicionamento final para as cartas 10, 11  e 12 é sempre o mesmo, mas diferente dos dois casos anteriormente analisados. Nestes três últimos casos, as cartas ficam posicionadas no monte B, ainda que na quarta linha do monte, como anteriormente se havia verificado.

 

Já as duas últimas cartas do monte central, a 13ª e a 14ª cartas, mudam de monte na posição final, pois passam para o monte C, mas também se mantêm na quarta linha do respectivo monte.

 

Em síntese, relativamente ao monte central, independentemente da carta que inicialmente se seleccione, no final ocupará a quarta linha do monte a vier fazer parte. Ao colocar-se este monte no meio dos outros dois ficará sempre com que a carta seleccionada fique a ocupar a posição 11, precisamente o número de letra da frase "É esta a carta".

 

O que acontecerá se a carta inicialmente seleccionada for uma das sete cartas do monte A ou do C? Faça o respectivo estudo e retire conclusões.

 

Um truque bem mais simples é o que apresento a seguir, adaptado da obra de Joe Fullman (2009)*:

 

"Pedir a um interlocutor para dividir um normal baralho de 52 cartas em dois montes. De seguida deve fixar a última carta de um dos montes, mantendo-a em segredo. O realizador do truque deve colocar o monte desta carta sobre o outro, ambos voltados para baixo. Em continuação, o interlocutor é convidado a distribuir as cartas, uma a uma, voltadas para baixo, formando quatro montes. Revela o monte onde está a carta seleccionada e o realizador do truque coloca o respectivo monte sobre os três restantes montes, todos voltados para baixo. Ao terminar de referir a palavra mágica "ACERTEI", retirando uma carta por cada letra dita,  estará a mostrar a carta seleccionada pelo seu interlocutor"

 

* - Fullman, J. (2009). Grande Livro de Truques de Magia. Sintra: Girassol.

 

Qual a explicação para o truque acabado de descrever?

Padrões de repetição e padrões de crescimento

Março 15, 2010

Paulo Afonso

Associar números a determinado tipo de figuras geométricas costuma ser habitual em contextos de recreação matemática. O exemplo que trago à reflexão desta vez prende-se com essa ideia e, com isso, viso abordar o tema dos padrões de repetição.

 

Utilizando os números de 1 a 8, inclusive, colocá-los nos círculos seguintes, todos e apenas uma só vez, de modo que a soma de b + d + f + h seja o dobro da soma de a + c + e + g e que a soma em cada lado da figura exterior seja sempre a mesma:

Este desafio implica que se tenha em conta a soma total que está em jogo ao usarem-se estes oito números. Esta soma é 36, pois 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

 

Por outro lado teremos de distribuir estes oito números de modo que b + d + f + h = 2 (a + c + e + g).

 

Sendo assim, teremos de ver se a soma 36 é divisível por 3, para que ao juntarem-se duas dessas três partes se obtenha um valor que é dobro da outra terça parte. Como a soma dos seus dígítos é um múltiplo de três (3 + 6 = 9), logo o 36 é divisível por 3. Origina um quociente 12.

 

Tendo em conta esta reflexão teórica resta tentar obter o valor 12 através da adição de quatro desses oito números disponíveis.

 

Vejamos:

a) 6 + 3 + 2 + 1 = 12

b) 5 + 4 + 2 + 1 = 12 

 

Existem, pois, duas possibilidades de obtenção de soma 12 nas condições enunciadas acima.

 

De seguida teremos de testar se os outros quatro números restantes permitem obter uma soma que é dobro de 12, isto é, 24. Vejamos para cada um dos casos anteriores:

 

a) 4 + 5 + 7 + 8 = 24

b) 3 + 6 + 7 + 8 = 24

 

Em ambos os casos se obtém a soma 24 pretendida. Testemos, então, a sua distribuição nos oitos espaços da figura, tendo também em conta que a soma dos valores em cada lado da figura exterior seja sempre igual. Vejamos os primeiros valores:

 

 

Confirma-se que a soma dos valores existentes nos quatro vértices da figura inscrita é o dobro da soma dos valores existentes nos vértices da figura que inscreve aquela e que a soma dos valores de cada lado da figura exterior é sempre a mesma. 

 

Testemos, agora, os segundos valores (5 + 4 + 2 + 1 e 3 + 6 + 7 + 8):

 

Note-se que para a distribuição dos valores nos vértices da figura exterior existem 3 possibilidades, isto é, o 5 pode ficar anexo do 4 e do 2, ou do 1 e do 4 ou do 2 e do 1:

 

 

Testando a distribuição dos outros quatro números, não é possível em qualquer caso obter-se para os quatro valores da figura inscrita uma soma que seja o dobro daqueles quatro valores, de modo a que a soma dos valores da figura exterior seja sempre a mesma. Eis a melhor aproximação possível, onde se evidencia, pois, a impossibilidade desta opção:

 

 

A tarefa colocada tem, pois, uma única solução.

 

Imaginemos a replicação da figura de sucesso de modo a obter-se a figura seguinte:

Que aspectos matemáticos interessantes poderia destacar?

 

Veja, por exemplo, que as somas dos valores envolvidos nos dois eixos de simetria são números ímpares consecutivos, respectivamente 21 e 23.

 

Por outro lado, as somas dós valores envolvidos nas linhas oblíquas obedece à seguinte regularidade: 9, 24, 24, 9.

 

Note-se, ainda que estes quatro valores (9, 24, 24, 9) coincidem com as somas dos valores existentes nos lados dos dois rectângulos que se intersectam.

 

E no caso de este padrão se repetir, de forma a fazer crescer a pavimentação? Veja-se a figura resultante:

 

 

 

Que regularidades matemáticas podem ser agora evidenciadas?

 

Veja, por exemplo, que a a soma dos valores existentes em cada linha horizontal obedece à seguinte regularidade: (38, 40, 38, 40, 38). Já a nível vertical, a regularidade é a seguinte: (38, 41, 38, 41, 38).

 

Por sua vez, em termos de linhas oblíquas, a regularidade numérica verificada é a seguinte: (9, 24, 33, 48, 48, 33, 24, 9).

 

Faça um estudo, em todo semelhante ao que acabei de fazer, para o caso de os oito números envolvidos passarem a ser os oito primeiros números pares. Será que as regularidades e possibilidades de pavimentação agora obtidas se mantêm? Haverá padrões de crescimento?

Investigações matemáticas envolvendo cartas

Março 08, 2010

Paulo Afonso

O tema das investigações matemáticas tem servido de base ou contexto para a exploração de muitos assuntos neste blog. Desta vez o mesmo vai ser utilizado com recurso a um normal baralho de cartas.

 

Imagine que pretende efectuar uma moldura para uma fotografia, tendo aquela a particularidade de ser formada por todas as cartas numéricas, de um só naipe, de um normal baralho de cartas, isto é, do 1 (ás) ao 10. A disposição das dez cartas deve obedecer ao esquema seguinte, sendo que cada lado da moldura deve originar sempre a mesma soma. Como proceder?

 

 

A título de exemplo, e com base em múltiplas experimentações, poderia ocorrer a seguinte resposta:

 

 

Observando a moldura, confirma-se que existe sempre uma mesma soma para cada um dos quatro lados, usando todos, e apenas uma vez, os dez números disponíveis. Refiro-me ao valor 18.  

 

De facto, 2 + 10 + 6 = 18; 6 + 7 + 4 + 1 = 18; 1 + 9 + 8 = 18; 8 + 5 + 3 + 2 = 18. 

 

Em situação de sala de aula seria interessante analisar-se esta moldura e perceber a razão de ela ter sido um caso de sucesso.

 

Em primeiro lugar, e tendo como referência o esquema seguinte, ter-se-á de concluir que a soma das três cartas de cima (A) é igual à soma das três cartas de baixo (C). Por outro lado, as quatro cartas sobrantes, duas pertencentes ao lado B e as outras duas pertencentes ao lado D têm de originar um valor que adicionado aos valores das seis cartas dos lados A e C dê a soma das dez cartas, que é 55:

 

Tendo em conta estas premissas, a soma dos valores das quatro cartas afectas a B e D terá de ser tal que ao subtrair ao total 55 dê um resto par, para que este possa originar dois valores iguais, sendo um para o A e outro para o C. Eis os doze casos possíveis:

 

a) 55 - 11 = 44 --- (22 + 22)

b) 55 - 13 = 42 --- (21 + 21)

c) 55 - 15 = 40 --- (20 + 20)

d) 55 - 17 = 38 --- (19 + 19)

e) 55 - 19 = 36 --- (18 + 18)

f) 55 - 21 = 34 --- (17 + 17)

g) 55 - 23 = 32 --- (16 + 16)

h) 55 - 25 = 30 --- (15 + 15)

i) 55 - 27 = 28 --- (14 + 14)

j) 55 - 29 = 26 --- (13 + 13)

k) 55 - 31 = 24 --- (12 + 12)

l) 55 - 33 = 22 --- (11 + 11)

 

De facto, a negrito (alínea e) está o caso ilustrado acima. Contudo, para a soma 18 + 18 haverá só aquele caso?  

 

 

Vamos investigar como é que quatro números diferentes podem originar a soma 19. Uma delas é a que esteve na base do caso de sucesso ilustrado acima: 7 + 5 + 4 + 3 = 19.

 

Eis outras 12 possibilidades:

 

a) 10 + 6 + 2 + 1

b) 10 + 5 + 3 + 1

c) 10 + 4 + 3 + 2

d) 9 + 7 + 2 + 1

e) 9 + 6 + 3 + 1

f) 9 + 5 + 4 + 1

g) 9 + 5 + 3 + 2

h) 8 + 7 + 3 + 1

i) 8 + 6 + 4 + 1

j) 8 + 6 + 3 + 2

k) 8 + 5 + 4 + 2

l) 7 + 6 + 5 + 1

m) 7 + 6 + 4 + 2

 

Resta agora cruzar cada um destes doze casos com a soma de A com C, isto é com 18 + 18, para um total de 36:

 

a) 10 + 6 + 2 + 1 A = 9 + 5 + 4 C = 8 + 7 + 3
b) 10 + 5 + 3 + 1 A = 9 + 7 + 2 C = 8 + 6 + 4
c) 10 + 4 + 3 + 2 A = 9 + 8 + 1 C = 7 + 6 + 5
d) 9 + 7 + 2 + 1 A = 10 + 5 + 3 C = 8 + 6 + 4
e) 9 + 6 + 3 + 1 X X
f) 9 + 5 + 4 + 1 A = 10 + 6 + 2 C = 8 + 7 + 3
g) 9 + 5 + 3 + 2 A = 10 + 7 + 1 C = 8 + 6 + 4
h) 8 + 7 + 3 + 1 A = 10 + 6 + 2 C = 9 + 5 + 4
i) 8 + 6 + 4 + 1 A = 9 + 7 + 2 C = 10 + 5 + 3
 j) 8 + 6 + 3 + 2  X  X
 k) 8 + 5 + 4 + 2 A = 10 + 7 + 1  C = 9 + 6 + 3 
 l) 7 + 6 + 5 + 1  X
 m) 7 + 6 + 4 + 2 A = 10 + 5 + 3  C =  9 + 8 + 1

 

Analisando-se exaustivamente cada caso, apenas o da alínea h resulta numa moldura mágica, com soma 18 em cada lado. Vejamos:

 

 

O que resultará se a investigação incidir numa moldura mágica de soma 19? Haverá muitos casos de sucesso?

 

Apresento duas possíveis soluções:

 

Solução A:

 

Solução B:

 

Haverá mais algum caso de sucesso para esta soma mágica de 19? Como será a sua investigação? 

Operar com números pares

Março 01, 2010

Paulo Afonso

Muitos tipos de números já foram objecto de análise neste blog. Desde os números figurados, como sejam os números triangulares ou os números quadrados, até aos números cúbicos, todos serviram de base a explorações de natureza recreativa.

 

Para este novo artigo seleccionei o conjunto dos números pares. De entre múltiplas actividades que os podem envolver, escolhi algumas de natureza aditiva.

 

Num contexto de matemática recreativa como distribuir, na figura seguinte, os sete primeiros números pares, de modo a que a soma de "a + b + c + d" seja igual à soma de "b + c + d + e + f + g":

 

Esta tarefa poderia ser resolvida pela estratégia de tentativa e erro. Contudo, em contexto de sala de aula seria desejável que os alunos concluíssem que "a" deveria coincidir com a soma de "g + f + e", porque a adição "b + c + d" é comum em ambos os casos.

 

Sendo assim, e tendo em conta estes sete primeiros números pares, os dois únicos casos em que cada um desses sete números coincide com a soma de outros três são o 12 (2 + 4 + 6) e o 14 (2 + 4 + 8). Logo, eis as duas soluções possíveis:

 

 

Vejamos agora um outro desafio, um pouco mais complexo do que o anterior:

 

Usando os oito primeiros números pares, como os distribuir na figura seguinte, de modo a que "a + b + c + d" seja igual a "e + f + g + h":

 

 

Esta tarefa deveria incutir nos resolvedores um sentido de indagação acerca de como os números estão relacionados na disposição geométrica da figura.

 

Por outro lado, sabe-se que a soma dos oito primeiros números pares é 72, pois 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 = 72.

 

Como se trata de uma soma par, pode ser decomposta em dois valores iguais (72 = 36 + 36). Logo, a ser possível resolver esta tarefa, cada uma das duas partes da figura deverá estar associada a este valor 36.

 

Resta agora averiguar se com os valores em causa será possível obter este número duas vezes. Curiosamente o 36 permite decompor-se, também ele, em dois números iguais (18 + 18) e este valor pode ser obtido de quatro maneiras diferentes:

 

a) 18 = 16 + 2

b) 18 = 14 + 4

c) 18 = 12 + 6

d) 18 = 10 + 8

 

Tendo em conta estas quatro maneiras de se obter o valor 18, eis que existem três possibilidades de resposta à tarefa colocada:

 

1 - a) + b) e c) + d)

2 - a) + c) e b) + d)

3 - a) + d) e b) + c)

 

16 + 2 e 14 + 4 12 + 6 e 10 + 8
16 + 2 e 12 + 6 14 + 4 e 10 + 8
16 + 2 e 10 + 8 14 + 4 e 12 + 6

 

Imagine, agora, que era solicitado a distribuir os nove primeiros números pares na figura seguinte, de modo a que a soma de "a + b + c + d + f + g + h + i" seja igual à soma de "b + c + d + e + f + g + h". Como fazer?

 

 

Eis quatro possíveis soluções:

 

 

 

Há, certamente, outras soluções. Investigue quais são e explicite o raciocínio utilizado.

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"