Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Pirâmides numéricas

Outubro 24, 2010

Paulo Afonso

Conectar a Álgebra à Geometria, e vice-versa, costuma ser usual no âmbito de actividades de recreação matemática. O exemplo que escolhi para reflexão também apela a este tipo de conexão matemática e visa contribuir para o desenvolvimento do pensamento algébrico.

 

De facto, irei utilizar o objecto matemático - Pirâmide quadrangular - e desafiarei os meus leitores a descobrir o número a colocar na base deste tipo de sólido tendo em conta que esse valor será a soma de quatro outros números, cada um deles a colocar em cada uma das faces laterais do sólido. Contudo, há uma regra para a colocação destes quatro números. Conhecendo-se o primeiro deles, o segundo será sempre o dobro dele acrescido de uma unidade; já o terceiro será o dobro do segundo, também acrescido de uma unidade e o quarto será o dobro do terceiro, acrescido de uma unidade também. Os números poderão ser colocados de acordo com o sentido dos ponteiros do relógio e a planificação do sólido em causa é a seguinte:

 

Se o menor dos números for o 1, quais os restantes?

 

Trata-se de uma tarefa de simples resolução e eis a figura plana que lhe dá resposta:

 

Temos, pois, que o dobro de 1, mais 1 é 3; o dobro de 3, mais 1 é 7; o dobro de 7, mais 1 é 15 e o dobro de 15, mais 1 é 31. Logo, o valor a colocar na base desta pirâmide seria o número 26, pois 26 = 1 + 3 + 7 + 15.

 

Como tarefa simples que é, alarguemos o estudo a três novas pirâmides, iniciadas, respectivamente pelo valor 2, pelo valor 3 e pelo valor 4. Eis as soluções:

 

 

Seria interessante, em contexto de sala de aula, levar os alunos a investigarem possíveis relações existentes entre estas quatro planificações, em termos dos valores numéricos das faces laterais e das respectivas bases. 

 

Uma conclusão possível seria a de que o valor que inicia a figura seguinte é sempre o número que sucede ao menor número que iniciou a figura anterior (1 - 2 - 3 - 4). Já a segunda posição, aquela que é o resultado de se dobrar o primeiro valor em cada figura acrescido de uma unidade, é sempre maior em duas unidades do que o respectivo valor da figura anterior (3 - 5 - 7 - 9). Este tipo de raciocínio também poderia ser feito para o terceiro valor de cada figura, como sendo sempre maior em quatro unidades relativamente ao valor da figura imediatamente anterior (7 - 11 - 15 - 19). Por sua vez, os maiores números de cada planificação também obedecem a uma regularidade numérica. De facto o valor da figura seguinte nessa posição é sempre maior em oito unidades relativamente ao respectivo valor da figura anterior (15 - 23 - 31 - 39).

 

Ora, nestas condições de evidência de várias relações numéricas entre as diferentes planificações das pirâmides, também seria desejável que os alunos tentassem averiguar se os valores das bases se podem relacionar entre si. Será que sim?

 

Uma possível análise, de natureza mais algébrica, poderia ser a que a figura seguinte evidencia:

 

Note-se que se o 1º valor for "x", o segundo será o seu dobro mais uma unidade "2x + 1". Por sua vez, o 3º número será o dobro do 2º, acrescido de uma unidade, isto é: 2 (2x + 1) + 1 = 4x + 2 + 1 = 4x + 3. Já o 4º número será o dobro do 3º, acrescido de uma unidade, ou seja: 2 (4x + 3) + 1 = 8x + 6 + 1 = 8x + 7. Logo, o valor da base resulta da soma de todos os valores das faces laterais: x + (2x + 1) + (4x + 3) + (8x + 7), onde os parêntesis só servem para evidenciar cada uma das quatro somas. Logo, o seu valor será 15x + 11, que mais não do que o produto do valor inicial por 15, acrescido de 11 unidades.

 

Testemos esta lei geral ou algoritmo para o caso de "x", isto é, o valor inicial ser 5:

 

O valor da base será 15 x 5 + 11 = 86.

 

No sentido de se confirmar este valor através da construção da planificação e seguindo as regras acima enunciadas para a escrita dos quatro números laterais, sabe-se que:

 

1º valor ----- 5

2º valor ----- 2 x5 + 1 = 11

3º valor ----- 2 x 11 + 1 = 23

4º valor ----- 2 x 23 + 1 = 47

 

Logo, a soma será 5 + 11 + 23 + 47 = 86:

 

Outra possibilidade de se poder chegar à soma da base passa por se investigar um outro tipo de relação numérica existente entre cada valor inicial e cada soma respectiva das figuras analisadas:

 

Valor inicialSoma da base
126
241
356
471
n

?

 

Note-se que a tabela anterior evidencia que cada soma é igul à soma anterior mais 15 unidades. Logo a mesma pode ser reescrita da seguinte forma:

 

Valor inicialSoma da base
126 = 26 + 0 x 15
241 = 26 + 1 x 15
356 = 26 + 2 x 15
471 = 26 + 3 x 15
n

26 + (n - 1) x 15

 

Logo, testando este algoritmo para o valor "n" inicial 5, confirma também a soma 86, pois: 26 + (5 - 1) x 15 = 26 + 4 x 15 = 26 + 60 = 86.

 

Tirando partido desta reflexão, será capaz de averiguar se o valor 161 pode ser um valor válido a colocar na base de uma pirâmide deste tipo, em que os quatro valores laterais obedecem às regras acabadas de analisar. No caso de ser um valor válido, quais serão os quatro valores a colocar nas faces laterais da pirâmide?

Conexões matemáticas entre os quadrados mágicos e as potências de expoente inteiro

Outubro 14, 2010

Paulo Afonso

As figuras mágicas já foram objecto de análise neste blog, por serem um objecto de recreação matemática propício ao estabelecimento de múltiplas conexões matemáticas. No presente artigo pretendo conectar um desse tipo de figuras (os quadrados de ordem 3) ao tema das potências de expoente inteiro.

 

Comecemos por analisar as seguintes figuras:

  

 

Analisando-se cada uma delas constata-se que são formadas por nove números inteiros consecutivos, iniciando a da esquerda no 1, a do meio no 2 e a da direita no 3. Adicionando-se os três valores de cada linha, cada coluna e cada diagonal, a soma é sempre a mesma em cada figura: na da esquerda há uma soma mágica de 15, na do meio a soma mágica é 18 e na da direita a soma mágica é 21.

 

Existe, pois, um padrão numérico que relaciona as várias somas mágicas que se vão obtendo, a partir do menor número de cada sequência numérica utilizada. De facto, para o início em 1, a soma é 15; para o início em 2, a soma é 15 + 1 x 3; para o início em 3, a soma mágica é 15 + 2 x 3 e assim sucessivamente. 

 

Seria interessante, em contexto de sala de aula de matemática, que os alunos fossem incentivados a investigar esta e outras regularidades existentes nestas mágicas figuras, chegando mesmo à lei geral que permite identificar ou prever uma qualquer soma mágica (s) a partir de um qualquer número inteiro (n) que inicie uma sequência de nove números inteiros consecutivos. Essa lei seria a seguinte s = 15 + (n - 1) x 3.

 

Observando com atenção as três figuras acima, facilmente se constata que a disposição do valor ordinal de cada um dos nove números obedece a uma mesma distribuição geométrica que é a seguinte:

 

 

Ora, tendo em conta esta mesma disposição geométrica, analisemos agora a seguinte figura. será um quadrado mágico?:

 

 

Obviamente que salta à vista não tratar-se de uma quadrado de soma mágica, pois os valores são muito díspares; não são consecutivos. Contudo se em vez de os adicionarmos em linha, em coluna ou em diagonal, os multiplicarmos, teremos uma bela surpresa.

 

De facto:

 

2 x 256 x 8 = 4096

64 x 16 x 4 = 4096

32 + 1 x 128 = 4096

  

2 x 64 x 32 = 4096

256 x 16 x 1 = 4096

8 x 4 x 128 = 4096

 

2 x 16 x 128 = 4096

8 x 16 x 32 = 4096

 

O produto mágico é, pois, 4096. Analisando os nove números em causa verifica-se serem as primeiras nove potências de base 2. Vejamos:

 

 

Em sala de aula, e dependendo do tipo de alunos, poder-se-ia introduzir a regra da multiplicação de potências com a mesma base e expoentes diferentes (mantém-se a base e adicionam-se os expoentes). De facto:

 

21 x 28 x 23 = 212

26 x 24 x 22 = 212

25 x 20 x 27 = 212

  

21 x 26 x 25 = 212

28 x 24 x 20 = 212

23 x 22 x 27 = 212

  

21 x 24 x 27 = 212

23 x 24 x 25 = 212

 

Passemos agora às potências de base 3. Eis a figura com as nove primeiras potências de base 3:

  

 

Note-se que esta figura obedece ao mesmo padrão multiplicativo anterior:

 

31 x38 x 33 = 312

36 x 34 x 32 = 312

35 x 30 x 37 = 312

   

31 x 36 x 35 = 312

38 x 34 x 30 = 312

33 x 32 x 37 = 312

 

31 x 34 x 37 = 312

33 x 34 x 35 = 312

  

Com os respectivos valores das potências, o aspecto da figura será o seguinte:

 

 

Calculemos, pois, o respectivo produto mágico:

 

3 x 6561 x 27 =531441

729 x 81 x 9 = 531441

243 x 1 x 2187 = 531441

 

3 x 729 x 243 = 531441

6561 x 81 x 1 = 531441

27 x 9 x 2187 = 531441

 

3 x 81 x 2187 = 531441

27 x 81 x 243 = 531441

 

Analisemos, ainda as nove primeiras potências de base 4:

 

 

Neste caso volta a haver um produto mágico, de valor 412, isto é 16777216.

 

Como exploração extra poder-se-ia substituir a base destas potências pelo quadrado de dois, o que daria a seguinte nova figura:

 

 

Tirando partido desta substituição, poder-se-ia introduzir ou rever o conceito de potência de uma potência, destacando a regra operativa de manter a base e multiplicar os expoentes. Eis como figura a figura mágica:

 

 

Logo, o produto mágico 412 será equivalente ao valor da potência 224.

 

Tendo em conta esta regularidade, quais são os nove números que originam um quadrado mágico com produto mágico 912? 

Pontes geométricas - conexão aos números triangulares

Outubro 07, 2010

Paulo Afonso

Atravessar um rio dispondo apenas de uma pequena barcaça costuma estar associado a vários desafios de recreação matemática. De facto, uma rápida pesquisa na Internet, sobre (a) o pastor, o lobo, a ovelha e a couve, (b) o pastor, o gato, o canário e o saco de alpista, ou (c) os canibais e os missionários, entre outros, permite constar que são apenas alguns dos desafios de travessia de um rio que existem. Por norma exigem uma apurado raciocínio e a escolha de uma boa estratégia de resloução, como seja o esquema ou figura.

 

Contudo, a minha reflexão não irá incidir nesse tipo de modo de atravessar um rio, pois em vez de uma barcaça pretende-se atravessá-lo a pé através de pontes flutuantes, formadas exclusivamente por objectos geométricos.

 

Veja-se a ponte seguinte e tente atravessar para a margem direita do rio seguindo a seguinte regra: só se pode deslocar para baixo, sempre no sentido esquerda, direita. Quantas são as possibilidades que existem?

 

Numa perspectiva de resolução sistematizada, seria interessante atribuir a cada círculo uma referência, como seja um número ou uma letra:

 

De seguida poder-se-á fazer uma lista organizada, evidenciando todas as possibilidades que existem:

 

A-E-I

B-F-J

C-G-K

 

A-E-F-J

B-F-G-K

 

A-E-F-G-K

 

Existem, pois, 3 + 2 + 1 possibilidades, isto é, 6 possibilidades diferentes de atravessar esta ponte, de acordo com as regras estipuladas.

  

Imaginemos, agora, que se aumentava um novo objecto em cada uma das margens, bem como na coluna central, como ilustra a figura seguinte:

  

 

Mantendo as condições ou regras do enunciado anterior, quantas serão, agora, as possibilidades da travessia do rio?

  

Eis novamente a figura referenciada em cada um dos objectos geométricos:

  

  

Vejamos as possibilidades:

  

A-F-K

B-G-L

C-H-M

D-I-N

  

A-F-G-L

B-G-H-M

C-H-I-N

  

A-F-G-H-M

B-G-H-I-N

  

A-F-G-H-I-N

  

Note-se que as possibilidades passaram a ser 4 + 3 + 2 + 1 = 10.

  

Continuando a aumentar um objecto geométrico em cada margem e na coluna central, eis como fica a figura:

 

Atribuindo as respectivas marcas:

 

Vejamos a análise:

 

A-G-M

B-H-N

C-I-O

D-J-P

E-K-Q

 

A-G-H-N

B-H-I-O

C-I-J-P

D-J-K-Q

 

A-G-H-I-O

B-H-I-J-P

C-I-J-K-Q

 

A-G-H-I-J-P

B-H-I-J-K-P

 

A-G-H-I-J-K-Q

 

Verificam-se, pois, 5 + 4 + 3 + 2 + 1 = 15 possibilidades.

 

Em contexto de sala de aula seria interessante que os alunos fossem solicitados a identificar ou descobrir a regularidade numérica que suporta este conjunto de tarefas. Seria desejável que estabelecessem a seguinte relação: 6 + 4 = 10 e 10 + 5 = 15, no sentido de proporem a seguinte solução que seria 15 + 6 = 21 possibilidades de atravessar o rio na condição de se aumentar mais um objecto geométrico em cada margem e na coluna do meio.

 

Além disto, também seria desejável conectar esta regularidade ou padrão numérico ao tema dos números figurados, designadamente os números triangulares. De facto, como já tive oportunidade de reflectir em artigos anteriores, a sequência de números triangulares (1, 3, 6, 10, 15, 21, 28,...) é gerada pelo seguinte algoritmo (n2 + n) : 2, sendo "n" um número natural.

 

Sendo assim, poder-se-á reflectir acerca de como será a disposição dos objectos geométricos nas margens e na coluna centraldo rio, de modo a que o número de possibilidades de o atravessar coincida com o 10º número triangular. Qual a sua sugestão?

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"