Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Sequência numérica enigmática

Março 17, 2012

Paulo Afonso

Este blog tem dedicado alguma atenção às regularidades numéricas, pois são um ente matemático muito interessante para o desenvolvimento de relações matemáticas associadas ao pensamento algébrico.

 

Para esta minha nova reflexão escolhi a seguinte sequência:

 

1     9     36     100     225

 

O desafio será o de se perceber se existe algum tipo de regularidade neste conjunto de números. A existir alguma regularidade, sugere-se, de seguida, que se proponha o próximo elemento da sequência.

 

Uma análise cuidada a cada elemento da sequência leva-nos a concluir que todos são números quadrados:

 

12     32     62     102     152

 

Tendo em conta que esses números quadrados podem ser vistos como sendo potências de expoente 2, centremo-nos apenas nos valores das bases dessas potências. Assim sendo, facilmente nos poderemos aperceber de que os valores dessas bases fazem parte de uma outra sequência numérica muito interessante - sequência dos números triangulares.

 

Como poderá ser confirmado em outros artigos deste blog, a sequência de números triangulares é gerada pela seguinte lei geral (n2 + n) : 2, sendo "n" pertencente ao conjunto dos números naturais.

 

Tendo em consideração esta observação, será fácil dar continuação à sequência numérica, pois o número da base da próxima potência será o 6º número triangular: (62 + 6) : 2 = 21.

 

Logo, 212 dará continuidade à sequência numérica, ficando esta assim:

 

 

1     9     36     100     225    441

 

Contudo, em sala de aula de matemática seria interessante que os alunos pudessem constatar que cada elemento da sequência original, como número quadrado que é, poderia ser obtido da seguinte forma:

 

1 = 12

9 = (1 + 2)2

36 = (1 + 2 + 3)2

100 = (1 + 2 + 3 + 4)2

225 = (1 + 2 + 3 + 4 + 5)2

 

Logo, o próximo número resultaria de (1 + 2 + 3 + 4 + 5 + 6)2, ou seja, 441.

 

Por sua vez, também seria interessante que algum aluno pudesse associar cada um destes números quadrados à soma de vários números cúbicos, pois:

 

1 = 13

9 = 13 + 23

36 = 13 + 23 + 33

100 = 13 + 23 + 33 + 43

225 = 13 + 23 + 33 + 43 + 53

 

Sendo assim, o próximo número da sequência continuará a ser uma soma de vários números cúbicos: 13 + 23 + 33 + 43 + 53 + 63 = 441.

 

Se atendermos agora a dois quaisquer números consecutivos desta sequência e os subtrairmos, isto é ao maior subtraímos o menor, que tipo de números se obtêm? Serão eles também números enigmáticos, isto é, que despertam a nossa curiosidade em estudá-los? Poderão ser associados a algum tipo de figura geométrica? Poderão ser conectados a outros conceitos matemáticos, como sejam os números ímpares? 

União de Blogs de Matemática

Março 11, 2012

Paulo Afonso

Serve o presente post para valorizar e divulgar uma excelente iniciativa, designada por União de Blogs de Matemática, existente nesta rede global que é a Internet.

 

Tomo a liberdade de citar o texto, extraído do seguinte site: http://obaricentrodamente.blogspot.com/2011/03/uniao-dos-blogs-de-matematica.html que justifica esta iniciativa, pois quantos mais aderirmos a ela, melhores serão os recursos para a aprendizagem matemática dos estudantes.

 

O texto é o seguinte:

 

 

 

"Sabemos que a matemática é fundamental para o desenvolvimento do pensamento lógico, que auxilia no processo de construção do conhecimento e desenvolve a autonomia do raciocínio e da criação de soluções das mais variadas situações problema. Neste contexto, esperamos que o uso da internet crie situações favoráveis à aprendizagem dos conceitos, auxiliando neste aprendizado contínuo da matemática.

 

Com esta ideia, criamos o a União dos Blogs de Matemática (UBM), um espaço na internet com objetivo de divulgar e agregar todos os blogs de matemática do país, mas estará de portas abertas para os blogs estrangeiros que tratam desta maravilhosa ciência.

Além disso, o blog possui um pequeno estatuto, uma página com a descrição de todos os blogs filiados e também dicas para melhorar o seu blog.
 
Para filiar-se é muito simples, basta ter um blog de Matemática com publicações periódicas, ser um seguidor da UBM, cumprir os estatuto e escolher e adicionar o banner da UBM (click aqui) a sua escolha.
Compartilhe esta ideia de divulgar a Matemática de forma gratuita e interessante na internet. Para saber mais visite a UBM (http://ubmatematica.blogspot.com/)."
 
Espero que aderiam a esta iniciativa, pois eu não espero nem mais um minuto para o fazer!

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"