Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

O mundo mágico das conexões matemáticas

Dezembro 28, 2008

Paulo Afonso

Perdoem-me os leitores a falta de modéstia por dedicar este artigo ao meu mais recente livro, acabado de publicar a 17 de Dezembro de 2008 pelas Edições do Instituto Politécnico de Castelo Branco, cujo nome é: O Mundo Mágico das Conexões Matemáticas, com o ISBN: 978-989-8196-06-4.

Apesar de não se tratar de um livro que explicitamente aborde o tema da Matemática Recreativa, contém algumas propostas de tarefas de aplicação da Matemática ao quotidiano, com a respectiva justificação matemática de isso poder ocorrer.

O índice do livro permite ter-se uma ideia dos temas abordados:

1 - Introdução

2 - Conexões matemáticas a partir do Binómio de Newton

3 - Conexão algébrica e geométrica relacionando outros casos notáveis da multiplicação

4 - Conexão entre a diferença de quadrados e o teorema de Pitágoras

5 - Ternos pitagóricos - várias perspectivas conectadas

6 - O triângulo de Pascal e sua conexão com o cálculo combinatório, com os números de Fibonacci e com outros temas matemáticos

7 - Conexão entre o triângulo de Pascal, os números triangulares e os números tetraédricos

8 - Conexão entre os números triangulares e outros números figurados

9 - Outras conexões matemáticas envolvendo os números triangulares

10 - Composição e decomposição de números através da utilização de triângulos mágicos

11 - Composição e decomposição de números através da utilização de quadrados mágicos

12 - As potências e sua conexão a vários temas matemáticos

13 - Conexões finais

14 - Bibliografia 

Eis alguns exemplos de tarefas propostas nesse livro:

 

A: - Imagine-se um terreno quadrado com 30 metros de lado, o qual vai ser dividido em quatro partes. Uma primeira parte será um amplo espaço para uma garagem, cujo chão será um rectângulo com 10 metros de largura e 20 metros de comprimento. Mesmo encostada a esta garagem está uma piscina quadrada com 100 metros quadrados de área. Além disso, mesmo ao lado da piscina fica uma zona ajardinada, de forma rectangular, com exactamente a mesma área que o chão da garagem. O resto do terreno fica para a edificação da casa, cujo chão será um quadrado. Qual é a área deste chão?

 

B: - Sabendo que existem cinco pessoas a pretender jogar matraquilhos, quantas são as combinações possíveis para estarem quatro pessoas a jogar de cada vez?

 

C: - Quantos apertos de mão são dados por 40 amigos que já não se viam há algum tempo e que se juntaram num congresso?

 

Note que o 1º caso está associado ao Binómio de Newton, o 2º caso ao triângulo de Pascal e às combinações e o 3º caso à sequência de números triangulares.

 

Qual a resolução de cada um?

Sequências mágicas

Setembro 05, 2008

Paulo Afonso

Em Matemática Recreativa as sequências numéricas suscitam actividades muito motivadoras quando associadas a determinadas disposições geométricas. Este tipo de conexão matemática podemos encontrá-la em múltiplas publicações da especialidade, como seja o magnífico livro de Brian Bolt (1996)*. Vejamos o seguinte exemplo que adaptamos dessa obra:

Colocar na figura seguinte os algarismos de 1 a 8, de modo a que a soma em cada linha e em cada coluna seja sempre a mesma:

 

Por tentativa e erro, esta tarefa poderia ser resolvida da seguinte forma, não esgotando, contudo, todas as possibilidades que existem:

Como explicação teórica sabemos que cada uma das quatro somas (S) é sempre a mesma, isto é, a + b + c = e + d + h = f + e + b = g + c + d. Logo, também sabemos que:

4S = a + b + c + e + d + h + f + e + b + g + c + d, isto é,

4S = a + 2b + 2c + 2d + 2e + f + g + h, ou

4S = (b + c + d + e) + (a + b + c + d + e + f + g + h)

Por outro lado sabemos que a + b + c + d + e + f + g + h = 36, logo:

4S = b + c + d + e + 36

Sabemos ainda que no mínimo b + c + d + e = 10 e no máximo será 26.

Logo, 4S estará compreendido entre 10 + 36 e 26 + 36, isto é, entre 46 e 62. Daqui podemos concluir que S estará entre 12 e 15.

Admitindo que S possa ser 12, sabe-se que b + c + d + e = 4 x 12 - 36, isto é, b + c + d + e = 12.

Sabemos também que a + b + c + e + d + h = 24. Logo, a + h = 24 - 12 = 12. Por sua vez, g + f = 12. Com base nestas conclusões torna-se fácil apresentar a solução aqui ilustrada.

Consegue fazer os estudos respectivos para as somas 13, 14 e 15?

* - Bolt. Brian (1996). Puzzles de Matemática. Lisboa: Terramar.

Esta interessante tarefa permite várias extensões, de entre as quais destaco o estudo semelhante para o caso de os oito números envolvidos serem os seguintes: 5, 6, 7, 8, 9, 10, 11 e 12.

Será que a soma mínima é 24, como mostro na figura seguinte? Haverás mais somas? Quantas?

Outra extensão possível é tentar distribuir os oitos números originais, de modo que as quatro somas sejam quatro números inteiros consecutivos.

Um caso possível é da figura seguinte, contudo o desafio é o de se investigar se existem mais casos como este, isto é, envolvendo quatro somas consecutivas, diferentes destas ou, então, que configurem uma progressão aritmética de razão 2.

Apenas deixo a pista de se analisar os quatro números colocados nas quadrículas a, f, g e h. De que números se tratam?

Somas olímpicas

Agosto 31, 2008

Paulo Afonso

Como referi no artigo anterior, as figuras geométricas, quando associadas a determinados números, permitem uma viagem fascinante ao mundo das figuras mágicas. O exemplo que a seguir apresento pode encontrar-se em dois magníficos livros do autor Capó Dolz*:

Na figura seguinte, alusiva aos Jogos Olímpicos, colocar nos 8 círculos cor-de-laranja os algarismos de 1 a 8, inclusive, de modo a que a soma de cada círculo maior central seja sempre a mesma e seja o dobro da soma de cada um dos dois círculos maiores laterais:

Uma possível resolução, com recurso à estratégia da tentativa e erro, poderia ser uma das duas que apresento:

 

Contudo, esta tarefa recreativa, levada para contexto de sala de aula exigia uma estratégia mais matematicamente sustentada.

Note-se que em ambas as soluções apresentadas, cada círculo lateral contém um par de números cuja soma é sempre 9. Por sua vez, cada círculo central, ao conter dois pares de números, igualmente com esta soma 9, possibilita que se dê resposta favorável à tarefa, pois a sua soma é 18. De facto, como se trata de um número par de algarismos consecutivos, permite que se observe a seguinte regularidade:

1 + 8 = 9; 2 + 7 = 9; 3 + 6 = 9; 4 + 5 = 9. Logo, colocando em várias possíveis posições os pares encontrados (1, 8), (2, 7), (3, 6) e (4, 5), obtém-se a resposta ao desafio colocado.

Note-se que se aos quatro primeiros círculos cor-de-laranja associarmos os números a, b, c e d e aos quatro seguintes, os números e, f, g e h, sabemos que a + b + c + d = c + d + e + f = e + f + g + h.

Por sua vez, também sabemos que a + b + c + d = 2 (a + b) e que e + f + g + h = 2 (g + h). Logo, resulta que a + b = c + d e g + h = e + f, sendo estas somas todas iguais. Ora isto só acontece para o caso de cada par de parcelas originar a soma 9.

* - Capó Dolz, Miquel (2007). Atrévete con las mates! Madrid: elrompecabezas.

- Capó Dolz, Miquel (2007). 101 Juegos de Lógica para Novatos. Tres Cantos: nívola.

 

Esta tarefa, permite algumas extensões, como seja o seguinte:

Colocar na figura original os mesmos 8 números, mas de acordo com as seguintes regras:

1 - A soma dos círculos laterais A e E ser a mesma

2 - A soma dos círculos B e D ser a mesma

3 - A soma do círculo C ser a maior de todas

Eis uma possível solução:

Encontre outra e explique o seu raciocínio!

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"