Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Calendários escritos em diferentes bases numéricas

Fevereiro 18, 2012

Paulo Afonso

o é a primeira vez que dedico atenção às bases e sistemas de numeração neste blog. Apesar de o nosso sistema de numeração ser de base decimal, torna-se importante que percebamos como funcionam outros sistemas de numeração suportados por outras bases que não sejam a decimal.

 

O exemplo mais vezes referenciado no nosso quotidiano será, porventura, o sistema de numeração de base dois ou binário. Como sabemos, trata-se de um sistema de numeração baseado apenas em dois tipos de símbolos escritos, o zero (0) e o um (1), muito utilizado no âmbito da informática.

 

Com estes dois únicos símbolos numéricos podem-se representar, por escrito, quaisquer quantidades numéricas. A título de exemplo, se se pretender representar a quantidade dois neste sistema de numeração, ter-se-á que utilizar o seguinte numeral: 10. O mesmo deverá ler-se: um grupo de dois e zero unidades. Já o numeral 11 representará o número cardinal três. A sua leitura deverá ser esta: um grupo de dois e uma unidade. Por sua vez, a quantidade quatro deverá ser apresentada da seguinte forma: 100. A sua leitura será: um grupo de quatro, zero grupos de dois e zero unidades. Assim sendo, a quantidade cinco será formada por um grupo de quatro, zero grupos de dois e uma unidade, isto é: 101.

 

Tendo em conta este sistema de numeração, dê continuidade ao preenchimento de um hipotético calendário relativo ao mês de Janeiro:

 

A imagem seguinte visa dar resposta ao desafio colocado:

 

 

Avaliemos alguns exemplos desse calendário... Como sabemos, o mês de janeiro tem trinta e um dias, pelo que a última célula preenchida deverá representar essa quantidade. E como é que o numeral 11111 constitui a representação escrita, na base dois ou binário, do cardinal trinta e um?

 

Como sabemos, se a mesma representação numérica 11111 fosse referente ao nosso sistema de numeração decimal, o mesmo queria dizer o seguinte:

 

Dezenas de MilharUnidades de MilharCentenasDezenasUnidades
104103102101100
%$&«*
11111

 

Teríamos:

- 1 dezena de milhar, isto é 1 x 104;

- 1 unidade de milhar, isto é 1 x 103;

- 1 centena, isto é 1 x 102;

- 1 dezena, isto é 1 x 101;

- 1 unidade, isto é 1 x 100.

 

Logo, concluímos que 11111 = 1 x 104 + 1 x 103 + 1 x 102 + 1 x 101 + 1 x 100.

 

Esta leitura não escapa ao nosso entendimento racional, porque estamos habituados a lidar com este sistema de numeração decimal ou de base dez. O critério de mudança é sempre este: muda-se para a ordem seguinte, quando na ordem anterior atingirmos a quantidade dez.

 

Retomemos, então, o numeral 11111 escrito no binário ou base dois e façamos um estudo semelhante ao acabado de fazer para a base dez:

 

Grupos de dezasseisGrupos de oitoGrupos de quatroGrupos de doisUnidades
2423222120
%$&«*
11111

 

Neste caso os valores da tabela deverão ser interpretados da segunte forma:

- 1 grupo de dezasseis, isto é 1 x 24;

- 1 grupo de oito, isto é 1 x 23;

- 1 grupo de quatro, isto é 1 x 22;

- 1 grupo de dois, isto é 1 x 21;

- 1 unidade, isto é 1 x 20.

 

Logo, concluímos que 11111 (escrito na base dois) = 1 x 24 + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20 = 16 + 8 + 4 + 2 + 1 = 31.

Neste caso, o critério de mudança é sempre este: muda-se para a ordem seguinte, quando na ordem anterior atingirmos a quantidade dois.

 

Vejamos outro exemplo do calendário, como seja 10110. Está colocado na célula referente ao dia 22 de janeiro. Estará correto?

 

Façamos a respetiva conversão para a base decimal: 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 16 + 0 + 4 + 2 + 0 = 22. Confirma-se, pois, que o valor 22 escrito em numeração binária ou de base dois é a seguinte 10110(base dois).

 

E se o nosso sistema de numeração não fosse o decimal nem o de base dois, mas, sim, o de base três? Como estariam representados os dias do mês de fevereiro de um ano bissexto?

 

Comecemos por perceber que o critério de mudança deste sistema de numeração será o "de três em três", isto é, só se avança para a ordem seguinte quando se atingir na ordem anterior a quantidade três. Logo, os símbolos disponíveis são apenas três (0, 1 e 2).

 

Comecemos por representar os primeiros cinco números de acordo com este critério de mudança:

 

 

Repare-se que:

1 = 1;

2 = 2;

3 = 10, isto é um grupo de três e zero unidades;

4 = 11, isto é um grupo de três e uma unidade;

5 = 12, isto é um grupo de três e duas unidades.

 

Como ficará o resto do calendário?

 

Espera-se que a quantidade seis seja vista como sendo dois grupos de três e zeros unidades, isto é 30. Já a quantidade sete será dois grupos de três e uma unidade e assim sucessivamente:

 

 

A título de certificação, vejamos, também agora, o último número deste mês, o que é relativo ao dia 29 de fevereiro.

1002(base três) = 1 x 33 + 0 x 32 + 0 x 31 + 2 x 30 =  27 + 0 + 0 + 2 = 29. Confirma-se, pois, o valor esperado.

 

Em contexto de sala de aula seria interessante desafiar os alunos a investigar a feitura dos restantes meses do ano, atribuindo a cada um uma base diferente, isto é: (a) ao mês de março atribuir a base quatro; (b) ao mês de abril atribuir a base cinco; (c) ao mês de maio atribuir a base seis; (d) ao mês de junho atribuir a base sete; (e) ao mês de julho atribuir a base oito; (f) ao mês de agosto atribuir a base nove; (g) ao mês de setembro atribuir a base dez; (h) ao mês de outubro atribuir a base onze; (i) ao mês de novembro atribuir a base doze e (j) ao mês de dezembro atribuir a base treze.

 

Como ficariam os calendários?

 

Vejamos até ao mês de Agosto, inclusivé:

 

 

 

 

 

 

Já o mês de setembro, por usar a base decimal, suscitará uma leitura mais imediata e linear:

 

 

 

O mês de outubro, associado à base onze, implica uma dificuldade acrescida por não haver um símbolo numérico que represente a quantidade dez, pois os que conhecemos coincidem com os dez dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Sendo assim, sempre que se pretender representar a quantidade dez usar-se-á a letra A. Logo, a quantidade vinte e um, escrita nesta base onze será 1A, isto é, um grupo de onze mais dez unidades. Eis como fica o respetivo calendário:

 

 

O mesmo se passa com o mês de novembro, escrito na base doze, pois ter-se-á que associar o símbolo A à quantidade dez e um novo sómbolo B à quantidade onze. Eis como fica o respetivo calendário:

 

 

Como será o último mês do ano, se for preenchido com base no critério de "treze em treze"?

 

Adições mágicas

Agosto 24, 2008

Paulo Afonso

As operações aritméticas costumam ser motivo de várias actividades de recreação matemática. Desde as operações lacunadas, passando pelos famosos quadrados e triângulos mágicos, até outro tipo de contextos lúdico-matemáticos, podemos encontrar essas operações. Centremos, contudo, a atenção na operação adição e vamos associá-la a uma figura já nossa conhecida, que é a de um calendário de bolso:

Na figura acima vamos seleccionar, por exemplo, um conjunto de 16 números, formando um quadrado de quatro por quatro números, iniciado no 2 e terminando no 26.

Como justificar a magia de se obter sempre a soma 56, ao seleccionarem-se apenas quatro desses dezasseis números, de acordo com as seguintes regras: (1) seleccionar um desses 16 números e eliminar todos os restantes números da linha e da coluna a que esse número seleccionado estado afecto; (2) dos restantes números não seleccionados nem eliminados, seleccionar um segundo número, eliminando, tal como no primeiro caso, todos os números da respectiva linha e da respectiva coluna; (3) seleccionar um novo número ainda não seleccionado e proceder como nos dois casos anteriores; (4) como ainda há um número por seleccionar, este será seleccionado e adicionado aos restantes três anteriormente seleccionados.

Confirma-se, ou não, a soma 56? Porque será?

 

Em contexto de sala de aula, esta tarefa pode ser utilizada para se fazer um estudo de natureza investigativa. Seria interessante que os alunos concluíssem que os quatro números seleccionados, independentemente das suas posições no quadrado numérico, estão a representar todas as linhas e todas as colunas desse quadrado, e apenas uma vez. Dois casos exemplificativos deste tipo de selecção são as duas diagonais do quadrado. Note-se que em ambos os casos a soma é 56. Analisando mais em pormenor, nem é necessário adicionar esses quatro números, pois basta adicionar os extremos e multiplicar por dois.

De facto analisemos os seguintes números: 2, 10, 18 e 26. Se atribuirmos ao 2 o valor a, temos a, a + 8, a + 16 e a + 24. Tudo adicionado dá 4a + 48. Logo, basta até multiplicar o menor dos números do quadrado por 4 e adicionar o valor 48. O resultado coincidirá, pois, com a soma de quaisquer quatro números seleccionados de acordo com as regras aqui estipuladas.

Será que este estudo é válido para um quadrado formado por 9 números, em que a quantidade de números a seleccionar é 3? Como fazer nestes casos?

 

Alguma matemática nos calendários

Julho 22, 2008

Paulo Afonso

Como situação de Matemática Recreativa poder-se-ia pedir a um interlocutor para escolher três números seguidos, em linha ou em coluna, existentes num calendário, tipo o que se evidencia a seguir:

  

De seguida poder-se-ia pedir que pesquisasse como é que é possível descobrirem-se rapidamente esses três números.

 

Em situação de sala de aula esta situação seria muito interessante ser analisada, pois só exige que se conheça se os números seleccionados pertencem a uma mesma semana ou a semanas consecutivas. O que há a fazer é dividir a sua soma por três para se obter o valor central. Depois, no caso de os números pertencerem à mesma semana, facilmente se ficam a conhecer os dois números restantes, pois trata-se do antecessor e do sucessor desse valor central. No caso de os números pertencerem a semanas consecutivas, para se descobrir o menor dos três valores somente há que se subtrair sete unidades ao valor central. Por sua vez, adicionando-se sete unidades a esse valor central descobre-se o maior dos três números seleccionados. Trata-se de um desafio envolvendo explicitamente o conceito de média aritmética.

O caso dos calendários permite muitas outras explorações matemáticas, como por exemplo pedir para os alunos seleccionarem um conjunto de dezasseis números, formando um quadrado de quatro por quatro e descobrirem muito rapidamente a sua soma. Quer dar uma sugestão de possível resolução?

 

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"