Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Conexões matemáticas envolvendo o conceito de metade, o conceito de combinações, o conceito de decomposição de números através de adições e o conceito de número triangular

Novembro 19, 2011

Paulo Afonso

Num dos artigos deste blog (http://recreamat.blogs.sapo.pt/16342.html) refleti há tempos acerca de como se poderiam arrumar três ovos numa caixa de ovos com a capacidade para meia dúzia de ovos. Na altura pude associar este desafio ao conceito de números triangulares que, como sabemos, resultam da lei geral (n2 + n) : 2. Recordando alguns destes números, destaco os primeiros quatro por voltarem a estar envolvidos na reflexão que vou apresentar neste meu novo artigo. Aqui estão: 1, 3, 6 e 10.

 

Desta vez, o desafio é encontrar todas as de pintar metade de um painel retangular, formado por seis quadriculas geometricamente iguais, como ilustra a figura seguinte:

 

 

Esta tarefa pode permitir várias sugestões, como sejam as seguintes:

 

 
  
  

 

Como podemos observar nas figuras acima, poder-se-á (a) pintar um linha inteira, (b) pintar os extremos de uma linha e o quadrado central da outra linha, (c) pintar a coluna do meio e a quadrícula da esquerda da linha de cima, (d) pintar a coluna da direita e a quadrícula do meio da linha de baixo, (e) pintar a coluna da esquerda e a quadrícula da direita da linha de baixo ou (f) pintar na linha de cima a quadrícula da esquerda e pintar na linha de baixo a quadrícula do meio e a da direita. 

 

Claro está que em sala de aula esta tarefa poderia constituir-se como sendo uma tarefa de investigação, por forma a que os alunos, em trabalho de pequenos grupos, pudessem investigar todas as possibilidades de resposta.

 

Ora, uma aproximação por tentativa e erro poderia ser uma abordagem que levasse os alunos ao sucesso da tarefa, descobrindo as 20 possibilidades de realizar este desafio. Contudo seria interessante incutir nos alunos uma forma organizada de apresentar os resultados do seu trabalho. Por isso, vou sugerir uma possível apresentação dos mesmos, com base em algum critério, que explicarei a seguir.

 

Assim, um primeiro conjunto de figuras será o que levar em linha de conta a quadrícula do canto superior esquerdo e a quadrícula do meio, da linha de cima. Já a terceira quadrícula deste primeiro conjunto de imagens não será fixa, pois será uma das restantes. Teremos, pois, 4 figuras com base neste critério:

 

   

 

De seguida apresento mais três figuras em que as quadrículas fixas são a do canto superior esquerdo e a do canto superior direito:

 

  

 

Por sua vez, as duas próximas figuras mantêm fixas as quadrículas do canto superior esquerdo e do canto inferior direito:

 

 

 

Por último falta uma figura que mantém fixas a quadrícula do canto superior esquerdo e a quadrícula do meio da linha de baixo:

 

 

Ora, usando-se sempre a quadrícula do canto superior direito resultam, pois, 10 figuras diferentes.

 

Passemos, agora, a fazer um estudo semelhante para todas as figuras que mantêm fixa a quadrícula do meio da linha de cima. Se além desta se fixar a do canto superior direito, eis que resultam mais três novas figuras:

 

  

 

Fixemos, agora, além da quadrícula do meio da linha de cima, a quadrícula do canto inferior direito. Originar-se-ão duas novas imagens:

 

 

 

Por último, fixando-se ainda a quadrícula do meio da linha de cima e, agora, a quadrícula do meio da linha de baixo, eis que surge uma nova figura:

 

 

Em síntese, fixando-se sempre a quadrícula do meio da linha de cima originaram-se mais 6 figuras.

 

Passemos, agora, a fixar a quadrícula do canto superior direito. Eis que se também se fixar a do canto inferior direito surgem duas novas figuras:

 

 

 

Por último, fixando-se novamente a quadrícula do canto superior direito e, agora, a do meio da linha de baixo, eis que temos uma nova figura:

 

 

Em síntese, fixando-se a quadrícula do canto superior direito obtiveram-se mais 3 figuras.

 

Para finalizar esta apresentação de resultados, falta apenas fixar a coluna do canto inferior esquerdo. Eis a figura que resulta:

 

 

Em síntese, obtivemos mais 1 figura. Sendo assim, no total temos 10 + 6 + 3 + 1 = 20 figuras diferentes.

 

Note-se, pois, que cada parcela desta adição é um número triangular, como foi referido ao início desta reflexão.

 

Claro que dependendo do tipo de alunos, este valor 20 poderia ser obtido pelo cálculo das combinações de seis quadrículas, três a três:

 

 

Mas esta mesma tarefa poderia conectar-se a outros conteúdos matemáticos, como seja a decomposição de números através de adições. Para tal vamos investigar quantas somas diferentes conseguimos obter a partir de três parcelas diferentes, tendo por base a figura seguinte:

 

 

Obviamente que será fácil percebermos que a menor soma é 6, que resulta da seguinte adição: 1 + 2 + 3:

 

 

De seguida, surge a soma 7 através de uma nova adição 1 + 2 + 4:

 

 

para a soma 8, temos duas adições diferentes:

 

 1 + 2 + 5 1 + 3 + 4
 

 

Vejamos agora a soma 9. Podemos obtê-la através de três adições diferentes:

 

 1 + 2 + 6 1 + 3 + 5 2 + 3 + 4
  

 

A soma 10 também pode ser obtida através de três diferentes adições:

 

 1 + 3 + 6 1 + 4 + 5 2 + 3 + 5
  

 

O mesmo se passa com a soma 11:

 

 1 + 4 + 6 2 + 3 + 6 2 + 4 + 5
  

 

Para a soma 12 voltamos a ter só duas adições:

 

 1 + 5 + 6 3 + 4 + 5
 

 

O mesmo se passa para a soma 13:

 

 2 + 5 + 6 3 + 4 + 6
 

 

Para a soma 14 só existe uma adição possível: 3 + 5 + 6:

 

 

Por último, a soma 15 também só admite uma adição: 4 + 5 + 6:

 

 

Em síntese, tratou-se de outra forma o encontrar das 20 formas diferentes de obter metade da figura, neste caso conectada à operação adição, associando-a à decomposição de todas as somas possíveis de serem obtidas nas condições enunciadas nesta tarefa.

 

Note-se, também, que estas 20 formas diferentes de se obterem as dez somas possíveis obedecem a uma regularidade de natureza geométrica, que a figura seguinte permite evidenciar:

 

 

Fazer um estudo semelhante para todos os produtos que se poderão obter a partir da mesma figura, utilizando-se sempre três fatores diferentes:

 

Um caso prático de números tetraédricos - empilhando esferas

Fevereiro 08, 2010

Paulo Afonso

Para os meus leitores mais interessados em questões de balística, provavelmente já terão sido confrontados com o clássico problema de empilhamento de balas de canhão. Como saberão, este problema costuma ser associado a uma estratégia de resolução designada por "Conjectura de Kepler".

 

 

Tudo terá ocorrido por volta do ano de 1600 quando um capitão de um navio pretendeu saber qual a melhor forma de empilhar as balas de canhão. A esta questão, o famoso matemático e astrónomo Johannes Kepler terá sugerido a forma piramidal.

 

Tirando partido deste acontecimento histórico, quantas serão as esferas existentes em cada um dos seguintes empilhamentos:

 

 

Não será difícil perceber-se, pela observação das imagens, que no 1º caso há 10 esferas, no 2º há 20 esferas e no 3º caso há 35 esferas.

 

Certamente terá observado que a forma como as esferas vão sendo empilhadas da base até ao topo obedece a um padrão ou regularidade numérica:

 

1º caso: 6 + 3 + 1 = 10

2º caso: 10 + 6 + 3 + 1 = 20

3º caso: 15 + 10 + 6 + 3 + 1 = 35

  

A regularidade existente reside no facto de as parcelas serem sempre números triangulares consecutivos, cujo menor valor é o número 1.

 

Tendo em conta esta regularidade, qual a quantidade de esferas que lhe dá continuidade?

 

Aplicando a lei geral que origina os números triangulares (n2 + 2) : 2, basta substituir o "n" pelo valor 6, uma vez que haverá 6 níveis de esferas. Ocorrerão os seguintes cálculos: (62 + 6) : 2 = 42 : 2 = 21.

 

Logo, o próximo empilhamento terá as seguintes esferas: 21 + 15 + 10 + 6 + 3 + 1 = 56.

 

Eis a respectiva figura:

 

 

Tendo em conta o nível da base de cada um dos empilhamentos anteriores, também se pode concluir que os respectivos números triangulares estão conectados à adição de números naturais consecutivos. De facto:

 

6 = 1 + 2 + 3

10 = 1 + 2 + 3 + 4

15 = 1 + 2 + 3 + 4 + 5

21 = 1 + 2 + 3 + 4 + 5 + 6

 

Seguindo esta regularidade, facilmente se descobre o número de esferas envolvidas na base do próximo empilhamento, pois será: 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. Note-se que 28 é, de facto, o 7º número triangular.

 

Assim sendo, o próximo empilhamento terá um total de 84 esferas, pois 84 = 28 + 21 + 15 + 10 + 6 + 3 + 1.

 

Destes exemplos conclui-se, pois, que cada nível de cada empilhamento tem um número de esferas que coincide com um elemento da sequência de números triangulares. Logo, cada figura tetraédrica resultante não é mais do que a soma de números triangulares consecutivos, iniciados pelo valor 1.

 

Sedo assim, os valores 1, 4, 10, 20, 35, 56, 84... fazem parte dos números tetraédricos, cuja lei de formação está associada à fórmula das combinações, tal como já tive oportunidade de analisar num dos artigos deste blog: (3C3, 4C3, 5C3, 6C3, 7C3, 8C3, 9C3, ...). Por este motivo será fácil obter-se o 10º termo desta sequência?

 

Imagine-se que o método de empilhamento das balas de canhão recorria à figura do quadrado para o nível da base em vez de ser a figura do triângulo. Qual o número de balas de canhão existentes da décima figura que dê continuidade a estas cinco iniciais:

 

 

Caracterize este novo padrão ou regularidade, isto é, descreva  a sua lei de formação e o tipo de números que nela está envolvido. 

Explorando o factorial do número

Janeiro 24, 2010

Paulo Afonso

Em Matemática existem alguns tipos de números que, quando colocados em sequência, crescem de uma forma muito rápida, pois o seu padrão de crescimento aponta nesse sentido. Veja-se, por exemplo, a sequência dos números cúbicos: 1, 8, 27, 64, 125, ... ou a sequência das potências de base dois: 1, 2, 4, 8, 16, 32, 64, 128, 256,... Contudo, outras há cujo padrão de crescimento é mais lento, como seja o caso dos números naturais: 1, 2, 3, 4, 5, 6,... ou dos números pares: 2, 4, 6, 8, 10, 12, ...

 

O conjunto de números que apresento a seguir também evidencia crescer muito rapidamente, pois a lei geral que os gera leva a que isso aconteça: 1, 2, 6, 24, 120, 720, 5040, ... Qual o próximo termo da sequência?

 

Talvez influenciados pelo título deste artigo, facilmente poderemos verificar que:

1 = 1

2 = 2 x 1

6 = 3 x 2 x 1

24 = 4 x 3 x 2 x 1

120 = 5 x 4 x 3 x 2 x 1

720 = 6 x 5 x 4 x 3 x 2 x 1

5040 = 7 x 6 x 5 x 4 x 3 x 2 x 1

Continuando este padrão de crescimento, o próximo termo resultará do seguinte produto 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1, isto é, será o número 40320.

 

Sendo assim, facilmente se percebe que estamos perante uma sequência numérica muito especial, que é a que resulta dos factoriais dos números naturais (n!). De facto, 1 = 1!, 2 = 2!, 6 = 3!, 24 = 4!, 120 = 5!, 720 = 6!, 5040 = 7! e, logicamente, 40320 = 8!

 

Tendo em conta esta regularidade, qual o factorial do número 10?

 

Esta questão é facilmente resolvida pelos seguintes cálculos: 10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 3628800.  

 

Este tipo de números revela ser muito importante em vários temas matemáticos, como seja o caso das permutações, das combinações ou dos arranjos.

 

Imaginemos que quatro atletas de salto em altura estão a disputar a final de uma prova muito importante. Sabendo-se que os seus nomes são Artur, Bento, Carlos e Daniel, como pode ser pensada a recepção das medalhas dos três elementos pertencentes ao pódio, isto é, 1º, 2º e 3º lugares? No fundo, pergunta-se como poderá ser formado o pódio?

 

Note-se que um destes quatro atletas não terá acesso ao pódio, pelo que poderemos tentar prever quantas são as combinações possíveis de três dos quatro atletas poderem ser os premiados.

 

Sendo assim, há quatro combinações. Uma delas deixará o Artur de fora do pódio, outra deixará o Bento, uma terceira possibilidade é a que deixa o Carlos excluído e a quarta combinação envolve apenas os atletas Artur, Bento e Carlos, ficando, pois, o Daniel de fora do pódio. Vejamos as quatro combinações possíveis:

 

a - Bento, Carlos e Daniel,

b - Artur, Carlos e Daniel,

c - Artur, Bento e Daniel,

d - Artur, Bento e Carlos.

 

Estas 4 combinações de três atletas resultam da aplicação do respectivo algoritmo aos quatro atletas:

 

4C3 = 4! / (4 - 3)! x 3! = 4 x 3 x 2 x 1 / 1 x 3 x 2 x 1 = 24 / 6 = 4.

 

Realmente, o tema das combinações está associado ao factorial do número. Contudo somente a sua associação ao tema das permutações nos permite encontrar a resposta para o desafio colocado.

 

De facto, note que para o caso em que é o Artur a ficar excluído do pódio há seis possibilidades de o mesmo ser formado:

 

A B C D E F

1º Bento

2º Carlos

3º Daniel

1º Bento

2º Daniel

3º Carlos

1º Carlos

2º Daniel

3º Bento

1º Carlos

2º Bento

3º Daniel

1º Daniel

2º Bento

3º Carlos

1º Daniel

2º Carlos

3º Bento

 

Note-se, pois, que este valor 6 resulta de se permutarem de posição estes 3 atletas. Logo, trata-se de mais um caso de aplicação do factorial do número, pois 6 = 3!

 

Se isto é verdade para o caso de ter sido o Artur (A) a ficar excluído do pódio, também o é para o caso de ter sido o Bento (B), ou o Carlos (C) ou o Daniel (D).

 

Logo, a tabela seguinte evidencia as 24 possibilidades de constituição do pódio, pois 4 x 3! = 4 x 6 = 24:

 

B - C - D B - D - C C - D - B C - B - D D - B - C D - C - B
A - C - D A - D - C C - D - A C - A - D D - A - C D - C - A
A - B - D A - D - B B - D - A  B - A - D D - A - B D - B - A
A - B - C A - C - B B - C - A B - A - C C - A - B C - B - A

 

Em síntese, a resposta para o desafio colocado é esta das 24 possibilidades, que mais não são do que 24 arranjos de quatro atletas, três a três. Logo, conclui-se que os arranjos de quatro atletas, três a três, é o produto das combinações desses quatro atletas, três a três, pelo factorial de três:

 

4A3 = 4C3 x 3! = 4 x 6 = 24

 

Vejamos um novo caso envolvendo o factorial de um número:

 

Tendo em conta os seguintes números: 10, 20, 30, 0, 50, 60, 70, 80, 90, como se poderá obter a soma 100, usando apenas três parcelas não repetidas?

 

Esta tarefa permite que se encontrem os seguintes quatro casos:

a) 70 + 20 + 10

b) 60 + 30 + 10

c) 50 + 40 + 10

d) 50 + 30 + 20

 

Tendo em conta estas quatro decomposições do número 100, será possível converter a figura seguinte num triângulo mágico de soma 100, isto é, poder-se-ão preencher os círculos com os valores envolvidos nestas adições para que a soma em cada lado do triângulo seja sempre 100?:

 

 

 

Este desafio leva a que tentemos testar as quatro somas, três de cada vez, pelo que o tema das combinações volta a estar presente. Uma vez mais, combinando as 4 somas, três a três, obtém-se o valor 4:

 

4C3 = 4! / (4-3)! x 3! = 4 x 3! / 3! = 4

 

Eis as quatro combinações:

1 - a) - b) - c)

2 - a) - b) - d)

3 - a) - c) - d)

4 - b) - c) - d)

 

Testemos caso a caso:

1º caso com as seguintes adições:

a) 70 + 20 + 10               b) 60 + 30 + 10                  c) 50 + 40 + 10

 

Como facilmente se pode constatar, este é um caso de impossibilidade, porque existe uma parcela comum a todas as adições, que é o valor 10. Logo, o mesmo nunca poderia pertencer à figura devido ao facto de, no máximo, um valor apenas poder pertencer a duas adições.

 

Testemos o 2º caso, com as seguintes adições:

a) 70 + 20 + 10         b) 60 + 30 + 10          d) 50 + 30 + 20

 

Note-se que entre a) e b) há apenas um valor comum, que é o 10. Por sua vez, entre a) e d) também só existe um valor comum, que é o 20. Por último, entre b) e d) existe outro valor comum, que é o 30. Logo, serão estes os valores a fazerem parte dos vértices do triângulo, por pertencerem, em simultâneo a duas adições. Os restantes são colocados nos espaços sobrantes, pelo que se consegue obter uma figura mágica de soma 100:

 

 

Testemos, agora, o 3º caso, que contempla as seguintes somas:

a) 70 + 20 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Entre a) e c) existe o valor 10 como sendo o único comum; entre a) e d) existe o valor 20 e entre c) e d) existe o valor 50. Usando-os nos vértices e os restantes nos espaços sobrantes, voltamos a obter um novo caso de sucesso:

 

 

Resta testar o 4º caso, formado pelas seguintes adições:

b) 60 + 30 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Ora, entre b) e c) existe o valor 10 comum; já entre b) e d) é o valor 30 e entre c) e d) é o valor 50. Testando estes valores, obtém-se um terceiro caso de sucesso, diferente dos dois anteriores:

 

 

Existem, pois, três respostas possíveis para a tarefa enunciada. Uma vez mais, o recuso o factorial do número teve aplicação na resolução da mesma.

 

Se cinco pessoas costumarem viajar todos os dias no mesmo carro, ao fim de quantos dias estará a repetir-se a forma como as mesmas vão sentadas nos cinco lugares desse carro? (nota: todos podem conduzir o carro, mas só mudam de posição ao iniciar um novo dia).

 

Números tetraédricos e conexão ao triângulo de Pascal e ao tema das combinações

Junho 22, 2009

Paulo Afonso

Os números figurados já foram várias vezes objecto de reflexão neste blog. Hoje não vou escrever exclusivamente ao nível da geometria do plano mas, também, ao nível do espaço.

Assim, como actividade de recreação matemática tente dar continuidade à seguinte sequência numérica:

1     4     10     20     ____

Provavelmente descobrirá a relação numérica evidenciada na tabela seguinte:

Números da sequência Sua obtenção
1 1
4 1 + 3
10 1 + 3 + 6
20            1 + 3 + 6 + 10         

Os valores existentes na coluna da direita da tabela permitem concluir que os números da sequência inicial podem ser obtidos através de adições de um determinado tipo de números figurados, os números triangulares (1, 3, 6, 10, etc.).

Tendo em conta que o próximo número triangular é o 15, isso significa que o número que dá continuidade à sequência inicial será o resultado de 1 + 3 + 6 + 10 + 15, isto é, o 35.

Tal como no caso dos números triangulares, o triângulo de Pascal também contempla a sequência numérica aqui proposta:

Esta figura permite confirmar que é o 35 o número que dá continuidade à sequência inicial. Além disto, como a seguir ao 35 surge o 56, isto quererá dizer que o 56 é a soma dos seis primeiros números triangulares (1 + 3 + 6 + 10 + 15 + 21), aliás como confirma o padrão stick do triângulo de Pascal.

Note que com uma forma parecida ao stick de hóquei em patins, qualquer adição envolvendo números triangulares consecutivos origina uma soma que é um número que faz parte da nossa sequência inicial:

Em contexto de sala de aula, além das conexões agora estabelecidas envolvendo esta sequência numérica, será desejável que os alunos descubram o nome deste fascinante conjunto numérico.

As imagens seguintes pretendem ajudar nessa designação:

1 4 10

As imagens anteriores evidenciam a configuração de figuras tetraédricas, pelo que esta sequência numérica deve ser designada como sendo a sequência de números tetraédricos.

Tendo em conta a explanação agora feita, a próxima figura tetraédrica corresponde ao valor 20:

Para além do estabelecimento desta conexão numérica e geométrica, também seria desejável que os alunos pudessem associar estes números ao tema das combinações. Aliás, num artigo anterior associei o triângulo de Pascal às combinações, pelo que é fácil perceber como se obtém cada um destes números por essa via:

 

 

De facto, a lei geral que origina os números tetraédricos assenta nas combinações de "n", três a três, com "n" maior ou igual a 3.

Tendo em conta as reflexões que suportam este texto, como proceder para encontrar o valor do décimo número tetraédrico? Quais os números triangulares sucessivos que lhe darão origem?

 

Informação aos meus leitores: Como entramos em período de férias lectivas, apenas retomarei a escrita neste blog na primeira semana de Setembro de 2009. Até lá limitar-me-ei a publicar alguns comentários que entendam enviar-me, ou responder a algumas dúvidas ou sugestões de temas para o blog.

Agradeço a todos a paciência de lerem os meus escritos, produzidos ao longo deste último ano, que representou mais de 61 mil entradas no blog.

Gostaria de agradecer individualmente a todos que o visitam, desde todo o Portugal e passando por Japão, Angola, Moçambique, Polónia, Brasil, México, Espanha, Perú, Bélgica, República Dominicana, Canadá, EUA, entre outros, e, sobretudo, àqueles que me deixam comentários, sugestões, opiniões, etc.

Um grande abraço para todos e até Setembro!

O mundo mágico das conexões matemáticas

Dezembro 28, 2008

Paulo Afonso

Perdoem-me os leitores a falta de modéstia por dedicar este artigo ao meu mais recente livro, acabado de publicar a 17 de Dezembro de 2008 pelas Edições do Instituto Politécnico de Castelo Branco, cujo nome é: O Mundo Mágico das Conexões Matemáticas, com o ISBN: 978-989-8196-06-4.

Apesar de não se tratar de um livro que explicitamente aborde o tema da Matemática Recreativa, contém algumas propostas de tarefas de aplicação da Matemática ao quotidiano, com a respectiva justificação matemática de isso poder ocorrer.

O índice do livro permite ter-se uma ideia dos temas abordados:

1 - Introdução

2 - Conexões matemáticas a partir do Binómio de Newton

3 - Conexão algébrica e geométrica relacionando outros casos notáveis da multiplicação

4 - Conexão entre a diferença de quadrados e o teorema de Pitágoras

5 - Ternos pitagóricos - várias perspectivas conectadas

6 - O triângulo de Pascal e sua conexão com o cálculo combinatório, com os números de Fibonacci e com outros temas matemáticos

7 - Conexão entre o triângulo de Pascal, os números triangulares e os números tetraédricos

8 - Conexão entre os números triangulares e outros números figurados

9 - Outras conexões matemáticas envolvendo os números triangulares

10 - Composição e decomposição de números através da utilização de triângulos mágicos

11 - Composição e decomposição de números através da utilização de quadrados mágicos

12 - As potências e sua conexão a vários temas matemáticos

13 - Conexões finais

14 - Bibliografia 

Eis alguns exemplos de tarefas propostas nesse livro:

 

A: - Imagine-se um terreno quadrado com 30 metros de lado, o qual vai ser dividido em quatro partes. Uma primeira parte será um amplo espaço para uma garagem, cujo chão será um rectângulo com 10 metros de largura e 20 metros de comprimento. Mesmo encostada a esta garagem está uma piscina quadrada com 100 metros quadrados de área. Além disso, mesmo ao lado da piscina fica uma zona ajardinada, de forma rectangular, com exactamente a mesma área que o chão da garagem. O resto do terreno fica para a edificação da casa, cujo chão será um quadrado. Qual é a área deste chão?

 

B: - Sabendo que existem cinco pessoas a pretender jogar matraquilhos, quantas são as combinações possíveis para estarem quatro pessoas a jogar de cada vez?

 

C: - Quantos apertos de mão são dados por 40 amigos que já não se viam há algum tempo e que se juntaram num congresso?

 

Note que o 1º caso está associado ao Binómio de Newton, o 2º caso ao triângulo de Pascal e às combinações e o 3º caso à sequência de números triangulares.

 

Qual a resolução de cada um?

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"