Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Múltiplos conceitos matemáticos resultantes de uma observação apaixonada

Novembro 16, 2009

Paulo Afonso

Muitas actividades de recreação matemática requerem para a sua resolução de um sentido apurado de observação, isto é, exigem uma observação atenta, criterial ou, se quisermos, uma observação apaixonada pelas questões matemáticas que as sustentam.

O exemplo que trago para ilustrar a importância de uma observação intencional e reveladora de sentido de indagação baseia-se no seguinte conjunto de números:

Dedicando-se alguns minutos a observar a tabela numérica anterior, facilmente podemos descobrir relações matemáticas entre os seus elementos ou até recordar alguns conceitos matemáticos.

Sendo assim, um exemplo a destacar pode ser o conjunto de alguns múltiplos do 3. Exceptuando o valor zero, a tabela abaixo evidencia um padrão de natureza geométrica envolvendo alguns dos primeiros múltiplos do 3:

Repare-se que todos os valores seleccionados têm a particularidade da soma dos seus dígitos ser sempre um múltiplo do 3. Com isto poder-se-ia, em contexto de sala de aula, abordar o critério de divisibilidade por 3: "um número é divisível por 3 se a soma dos seus dígitos for múltipla de 3".

Repara-se, também, que o tema do mínimo múltiplo comum entre dois ou mais números também poderia ser explorado com esta figura:

A título de exemplo, de entre os múltiplos do 3 e os múltiplos do 5 existentes na tabela, com excepção do zero, como é óbvio, o mínimo múltiplo comum entre eles é o 15. Já entre o 3 e o 6 é o 12; por sua vez, entre o 5 e o 6 é o 30. Este valor 30 volta a ser o mínimo múltiplo comum entre o 3, o 5 e 6, como se pode observar na figura.

Este último exemplo poderia servir de base para se abordar o tema da factorização de números compostos em factores primos. Se o 3 e o 5 já são números primos, o 6 não o é; aliás é um número perfeito, pois a soma dos seus divisores próprios coincide com ele mesmo (1 + 2 + 3 = 6). Logo, o 6 pode ser decomposto num produto de factores primos, sendo um exemplo que prova o Teorema Fundamental da Aritmética, que diz que "qualquer número inteiro maior do que 1 é primo ou resulta num produto de factores primos".

Voltando à tabela inicial, a mesma permite outras explorações matemáticas, como sendo a evidência da propriedade comutativa da operação multipliação:

Veja-se que 3 x 10 = 30 e 10 x 3 = 30. Por sua vez, 5 x 6 = 30 e 6 x 5 = 30. Logo, estes casos podem servir de exemplos para que se conclua que o produto não se altera quando se permutam os respectivos factores.

O tema dos números figurados também pode ser associado a esta tabela. Veja-se o caso dos números quadrados:

Consta-se, pois, que uma das diagonais da figura é formada exclusivamente por números quadrados, logo poder-se-ia explorar essa sequência para se chegar à respectiva lei geral (n2), sendo "n" um número inteiro.

Veja-se a próxima figura e observe-se o que ela sugere:

Cada secção colorida pode ser objecto da seguinte análise:

a) 1

b) 2 x 4 = 8

c) 3 x 9 = 27

d) 4 x 16 = 64

e) 5 x 25 = 125

f) ...

Fixando a nossa atenção nos produtos apresentados nas alíneas anteriores, os mesmos são outro tipo de números figurados, neste caso os números cúbicos (n3):

a) 1 = 13

b) 8 = 23

c) 27 = 33

d) 64 = 43

e) 125 = 53

f) ... 

Sendo assim quer os números quadrados quer os números cúbicos, quer a relação entre ambos, poderão ser objecto de análise através desta tabela numérica.

Que tipo de números estão assinalados a seguir e qual o critério para se ver rapidamente se outros quaisquer pertencem a essa mesma família ou conjunto numérico?:

Problemas com mais do que uma solução - um caso de divisibilidade

Fevereiro 02, 2009

Paulo Afonso

Resolver problemas tem sido uma actividade humana que tem contribuído imenso para o desenvolvimento de muitas áreas do saber, de onde a Matemática não é excepção. Desde logo, há problemas que nos despertam mais a vontade de os resolver do que outros. Até há quem diga que um problema só é verdadeiramente problema a partir do momento em que o resolvedor o tentar resolver.

De entre várias definições que poderia apresentar para o conceito de problema, recorro à que tem sido, porventura, mais vezes referenciada na literatura da especialidade, da autoria de Kantowski* (1974). Esta investigadora americana entende que "um indivíduo está perante um problema quando encontra uma questão à qual não consegue responder ou uma situação que não é capaz de resolver usando o conhecimento imediatamente disponível. Tem que pensar num caminho de combinação da informação de que dispõe, no sentido de poder chegar à solução do problema" (p.1).

 

* - Kantowski, E. (1974). Process Involved in Mathematical Problem Solving. University of Geogia. Tese de Doutoramento.

 

Como sabemos, a Matemática é fértil em problemas; existem os problemas de um passo, de dois ou mais passos, de processo, de aplicação, de tipo puzzle, de aparato experimental, de conteúdo e também existem os problemas sem solução, com dados a menos, com dados a mais, com uma única solução e com várias soluções.

Ora, o tema que eu escolhi para objecto de reflexão neste artigo é o tema dos problemas que permitem mais do que uma solução. A minha opção por este tipo de problemas reside no facto de, perante múltiplos resolvedores, poder haver, não só confronto de estratégias de resolução, mas, também, confronto em termos das soluções obtidas. Por outro lado, são um tipo de problemas fundamentais para se porem em prática as nossas capacidades de resolução, que passam por não ficarmos satisfeitos com uma primeira solução encontrada.

Como situação de recreação matemática imagine-se desafiado a resolver um primeiro desafio, extraído do livro de Costa** (1986):

"No mercado havia seis cestas com ovos, umas com ovos de galinha, outras com ovos de pata. Cada cesta tinha uma etiqueta com o número de ovos que continha:

5          6          12          14          23          29

«Se vendo esta cesta», pensava a vendedeira, «ficarei com duas vezes mais ovos de galinha que de pata».

A que cesta se referia a vendedeira?" (p. 29).

 

** - Costa, M. (1986). O problema da semana. LIsboa: APM.

 

Uma possível estratégia de resolução poderia ser a tentativa e erro, pelo que, testando todas as hipóteses, constatar-se-ia que só a venda dos ovos de uma cesta satisfazia o pensamento da vendedeira - seria a venda da cesta com 29 ovos.

De facto, se do total de ovos, que é 89, forem vendidos os 29 de uma das cestas, os 60 ovos restantes permitem que se encontrem dois valores numéricos, em que um é o dobro do outro (40 e 20), e que se adequam exactamente à quantidade de ovos restantes nas outras cinco cestas, pois: 40 = 23 + 12 + 5 e 20 = 14 + 6.

Segundo o meu ponto de vista, este problema, por permitir apenas uma solução válida, é, matematicamente, menos rico do que um outro em que apenas se trocava o valor 29 pelo valor 2 e se mantinha todo o enunciado anterior.

Note-se que já permitia duas soluções:

Total de ovos: 2 + 5 + 6 + 12 + 14 + 23 = 62
Cesta Vendida Ovos sobrantes: 60 Cesta Vendida Ovos sobrantes: 39
2

60 = 40 + 20

40 = 23 + 12 + 5

20 = 14 + 6

23

39 = 26 + 13

26 = 14 + 12

13 = 6 + 5 + 2

Constata-se, pois, que este novo enunciado permite duas conclusões:

(a) se se vender a cesta contendo 2 ovos, restam 40 (23 + 12 + 5) ovos de galinha e 20 (14 + 6) ovos de pata;

(b) se se vender a cesta contendo os 23 ovos, restam 26 (14 + 12) ovos de galinha e 13 (6 + 5 + 2) ovos de pata.

Em contexto de sala de aula, o processo de descoberta destes dois casos de sucesso poderia estar associado ao conceito matemático de divisibilidade de um número inteiro por três. Obter-se-iam três valores iguais (x + x + x) e a junção de duas das três partes (2x) que dividem esse número originaria um valor que seria o dobro da outra terça parte (x) que divide o número.

Façamos, pois, o estudo para cada uma das cestas.

- Vender a cesta dos 2 ovos:

O total de ovos passaria a ser 60. Como 6 + 0 = 6, isto é, múltiplo de 3, permite a obtenção de três quantidades iguais de ovos (20 + 20 + 20). Adicionando duas dessas quantidades (20 + 20), obtém-se um valor duplo da outra quantidade (20). Resta saber se existem ovos para perfazer exactamente estes valores. Como vimos acima, o valor 20 obtém-se pelos ovos das cestas que contêm 14 e 6 ovos, respectivamente. Por sua vez, as três cestas restantes contêm exactamente os outros 40 ovos (23 + 12 + 5).

- Vender a cesta dos 5 ovos:

O total de ovos passaria a ser 57. Como 5 + 7 = 12, estamos perante um novo múltiplo do 3. Logo, o 57 permite a obtenção de três quantidades iguais: 19 + 19 + 19. Resta saber se os ovos sobrantes permitem a obtenção dos valores 19 e 38 (19 + 19). Ora, verifica-se que isso não é possível, pois têm que se usar sempre as quantidades totais de cada cesta.

- Vender a cesta dos 6 ovos:

A vender-se esta cesta restariam 56 ovos. Como 5 + 6 = 11, conclui-se que o valor 56 não é divisível por 3. Logo, esta cesta não satisfaz o enunciado da tarefa.

- Vender a cesta dos 12 ovos:

O total de ovos restante seria 50. Uma vez mais, não estamos perante um múltiplo de 3, pois 5 + 0 = 5. Logo, esta cesta não está no pensamento da vendedeira como sendo a que deve vender naquelas condições descritas.

- Vender a cesta dos 14 ovos:

Ficariam 48 ovos para vender. 4 + 8 = 12. Como 12 é múltiplo de 3, o 48 também, pelo que permite a obtenção de três conjuntos de igual valor numérico (16 + 16 + 16). Contudo, vendendo-se os ovos desta cesta, os restantes não possibilitam a obtenção dos valores 16 e 32. Logo, esta não seria a cesta a vender.

- Vender a cesta dos 23 ovos:

Como o quadro acima evidencia, a venda desta cesta é favorável às pretensões da vendedeira. Assim, confirma-se que este desafio permite mais do que uma solução.

Tendo em conta esta reflexão, tente resolver este novo desafio: 

O Sr. Artur é vendedor de pintainhos de cor branca e pintainhos de cor amarela. Neste momento tem os pintainhos em seis caixas, contendo, respectivamente, as seguintes quantidades: 2, 4, 7, 11, 12 e 14 pintainhos.

«se vender os pintainhos desta caixa ficarei com o dobro de pintainhos amarelos relativamente ao número de pintainhos brancos».

A que caixa de pintainhos se referia o Sr. Artur? 

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"