Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Conexão matemática entre as potências de base dois, os números primos e os números perfeitos

Dezembro 11, 2011

Paulo Afonso

Tem sido apanágio deste blog evidenciar a Matemática como ciência global, isto é, onde os conceitos parecem interligar-se uns com os outros como que unidos por qualquer obra divina! Desta feita irei expor o resultado da reflexão que efetuei a propósito de pesquisas relacionadas com os conceitos matemáticos que dão nome a este artigo.

 

Começo por propôr uma investigação que permita identificar se haverá alguns números primos que resultem da diferença entre as várias potências de base dois, com expoente natural, e a unidade.

 

Uma possível solução passa por se fazer uma teste para as primeiras dez potências de base 2:

 

n = 121 - 1 = 2 - 1 = 1
n= 222 - 1 = 4 - 1 = 3
n = 323 - 1 = 8 - 1 = 7
n = 424 - 1 = 16 - 1 = 15
n = 525 - 1 = 32 - 1 = 31
n = 626 - 1 = 64 - 1 = 63
n = 727 - 1 = 128 - 1 = 127
n = 828 - 1 = 256 - 1 = 255
n = 929 - 1 = 512 - 1 = 511
n= 10210 - 1 = 1024 - 1 = 1023

 

Tendo em conta todas as diferenças obtidas, existem algumas que são números primos: 3, 7, 31, 127 e 511. À exceção do 1, os restantes são, pois, números compostos por admitirem mais divisores além deles próprios e da unidade.

 

Ora, centremo-nos nos números que são primos: 3, 7, 31, 127 e 511. Multipliquemos cada um deles pela mesma potência de base dois que lhe deu origem mas subtraindo ao expoente uma unidade. Que produtos se irão obter?

 

Uma tabela semelhante à anterior poderá ser um precioso auxílio:

 

n = 23 x 2n-1 = 3 x 2 = 6
n = 37 x 2n-1 = 7 x 4 = 28
n = 531 x 2n-1 = 31 x 16 = 496
n = 7127 x 2n-1 = 127 x 64 = 8128
n = 9511 x 2n-1 = 511 X 256 = 130816

  

Uma particularidade interessante é o facto de todos os produtos obtidos serem números pares. Investiguemos, agora, acerca dos divisores dos três primeiros (6, 28 e 496). Quais são os divisores de cada um?

 

Recorrendo ao processo de fatorização em fatores primos temos os seguintes resultados:

 

Fatorização do 6Fatorização do 28Fatorização do 496
  

 

6 = 2 x 328 = 22 x 7496 = 24 x 31

 

Tendo em conta os expoentes dos fatores primos de cada fatorização podemos saber o número de divisores de cada número. Assim, no caso do 6, os expoentes dos fatores são 1 e 1, pelo que este número terá (1 + 1) x (1 + 1) = 2 x 2 = 4 divisores:

 

 

Por sua vez, os fatores do 28 têm expoentes 2 e 1, pelo que este número terá (2 + 1) x (1 + 1) = 3 x 2 = 6 divisores:

 

 

Já o 496 terá (4 + 1) x (1 + 1) = 5 x 2 = 10 divisores:

 

 

Qual será, para cada caso, a soma dos seus divisores próprios, isto é, a soma de todos os divisores do número, excluindo ele próprio?

 

Vejamos:

a) 1 + 2 + 3 = 6

b) 1 + 2 + 4 + 7 + 14 = 28

c) 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496

 

Constata-se, pois, que em cada caso a soma dos divisores próprios do número coincide com esse número. Logo, o 6, o 28 e o 496 fazem parte de um fascinante conjunto de números designado por conjunto dos números perfeitos.

 

A este propósito sugiro a consulta do seguinte site: http://www.ime.usp.br/~leo/imatica/historia/nperfeitos.html.

 

Será que o 8128 e 130816 também são números perfeitos? A ser assim, qual o procedimento algorítmico que permite a sua obtenção?

 

 

Voltando ao número 120 - um caso de divisibilidade

Janeiro 05, 2009

Paulo Afonso

Num dos artigos anteriores tive oportunidade de fazer uma reflexão acerca de algumas conexões matemáticas envolvendo o número 120. Na altura associei-o a questões do quotidiano, aos números triangulares, aos números de Fibonacci, à conjectura de Goldbach, aos quadrados mágicos, às potências de base dois e às potências de base três. Desta vez vou associar o número 120 às operações aritméticas, aos divisores de um número, bem como às regularidades algébricas.

Inicio esta nova reflexão a partir de uma actividade proposta por Pierrre Berloquim (1991), no fantástico livro intitulado "100 Jogos Numéricos", publicado em Portugal pela Editora Gradiva.

O enunciado original remetia para o valor 100, mas vou adaptá-lo para o número 120.

Assim, tente encontrar dois números inteiros de modo a obter-se o valor 120 pela adição da sua soma com a sua diferença e com o seu produto.

Ora, por via da experimentação ou da tentativa e erro, uma possível solução seria a que envolve os valores 30 e 2, pois a sua soma é 32, a sua diferença é 28 e o seu produto é 60; logo, 32 + 28 + 60 = 120.

Transportando este desafio para o contexto de sala de aula, seria interessante que os alunos tentassem investigar se ainda seria possível obter-se outras soluções.

O desejável era estruturar a resolução em termos algébricos, pois poder-se-ia pensar em dois números inteiros "x" e "y", sendo "x > y". O enunciado da tarefa permite a seguinte escrita matemática: x + y + (x - y) + xy = 120. Resolvendo esta equação, resulta que x = 120 / (2 + y). Ora, este resultado implica que se tenha que pensar num valor inteiro para o "y" de modo que ao adicionar-se ao valor 2, o resultado divida exactamente o valor 120. Assim, obter-se-á um valor inteiro para o "x".

Tendo em conta esta análise, seria interessante que os alunos encontrassem todos os divisores do 120, podendo fazê-lo pelo processo de decomposição em factores primos (factorização): 120 = 23 x 3 x 5. O conjunto dos divisores de 120 seria formado pelos seguintes elementos: 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120. Voltando novamente à fórmula: x = 120 / (2 + y), obter-se-ão sete respostas:

y

x

x + y

x - y

xy

x + y + (x - y) + xy

0

60

60

60

0

60 + 60 + 0 = 120

1

40

41

39

40

41 + 39 + 40 = 120

2

30

32

28

60

32 + 28 + 60 = 120

3

24

27

21

72

27 + 21 + 72 = 120

4

20

24

16

80

24 + 16 + 80 = 120

6

15

21

9

90

21 + 9 + 90 = 120

8

12

20

4

96

20 + 4 + 96 = 120

Logo, as sete respostas possíveis envolvem os seguintes pares ordenados (60, 0); (40, 1); (30, 2); (24, 3); (20, 4); (15, 6) e (12, 8).

Note-se que ao adicionar-se o valor de "y" ao valor 2, obtém-se um divisor de 120, que ao multiplicar pelo respectivo valor de "x", outro divisor de 120, obtém exactamente o produto 120, isto é: (2, 60); (3, 40); (4, 30); (5, 24); (6, 20); (8, 15); (10, 12).

Pensemos agora no seguinte enunciado: tente encontrar dois números inteiros de modo a obter-se o valor 120 pela adição da soma do dobro do maior dos dois valores com o outro e com a diferença do dobro do maior com o outro e com o produto do dobro do maior com o outro.

Neste caso estamos perante a seguinte equação: 2x + y + (2x - y) + 2xy = 120. A sua resolução permite chegar-se à seguinte igualdade: x = 120 / (4 + 2y).

Fazendo-se uma tabela semelhante à anterior:

y

x

2x + y

2x - y

2xy

2x + y + (2x - y) + 2xy

0

30

60

60

0

60 + 60 + 0 = 120

1

20

41

39

40

41 + 39 + 40 = 120

2

15

32

28

60

32 + 28 + 60 = 120

3

12

27

21

72

27 + 21 + 72 = 120

4

10

24

16

80

24 + 16 + 80 = 120

resultam cinco possíveis soluções: (30, 0); (20, 1); (15, 2); (12, 3) e (10, 4).

Fazendo-se um paralelismo entre as duas tarefas acabadas de analisar, qual será o enunciado que permite, para o resultado 120, as seguintes soluções: (15, 0); (10, 1); (6, 3) e (5, 4)? Justifique o raciocínio utilizado.

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"