Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Relógios matemáticos

Janeiro 28, 2012

Paulo Afonso

A Matemática, como ciência, possibilita que muitos dos seus conceitos, de natureza abstrata, possam ser aplicados a situações da vida quotidiana das pessoas. Não me refiro exclusivamente ao cálculo mental, tão necessário para a realização de estimativas na hora de fazermos algumas compras num eventual supermercado, mas sim a múltiplas outras aplicações da Matemática nas nossas rotinas diárias.

 

Baseado neste pressuposto, e dando-lhe um cunho marcadamente investigativo e lúdico, gostaria de desafiar os leitores deste blog à realização de uma pequena investigação envolvendo apenas quatro vezes o número 3 para se obter o valor 3. Para tal é permitido a utilização do cálculo aritmético simples (adições, subtrações, multiplicações e divisões), parêntesis curvos e retos, a raíz cúbica, o fatorial, a junção de alguns destes números 3 para obter, por exemplo, 33 ou 333 ou potências de base três e expoente três.

 

A título de exemplo, o 3 pode ser obtido através dos seguintes cálculos:

 

 

 

 

 

De facto, usando-se apenas as operações aritméticas (exemplo da esquerda) ou o fatorial (exemplo do meio) ou o radical de índice 3 (exemplo da direita), obtém-se sempre o valor 3.

 

E se o desafio fosse, agora, o de se obter o valor 11, usando o mesmo critério anterior?

 

Eis três exemplos, que voltam a utilizar alguns conceitos matemáticos, além da priorização de algumas operações aritméticas em relação a outras. Refiro-me ao conceito de fatorial de um número e às potências de base três com expoente três:

 

11 = 3! + 3! - 3 : 311 = (33 + 3!) : 311 = 3 x 3 + (3! : 3)

 

Será que este desafio também obtém resposta favorável para os restantes números pertencentes a um mostrador de relógio, isto é, será possível obter os números, 1, 2, 4, 5, 6, 7, 8, 9, 10 e 12 usando o critério agora utilizado para a obtenção dos números 3 e 12?

 

Esta tarefa de recreação matemática, em conceito de sala de aula, pode suscitar a divisão da turma em pequenos grupos, de modo que haja divisão dos números que são objeto de investigação.

 

Eis uma possível solução para a tarefa proposta:

 

1 = (3 + 3) : ( 3 + 3)

 

2 = 3 : 3 + 3 : 3

 

4 = 3 + 33 - 3

 

5 = (3 + 3) : 3 + 3

 

6 = 3 + 3 + 3 - 3

 

7 = 3 : 3 + 3 + 3

 

8 = 3 x 3 - (3 : 3)

 

9 = 3 x 3 + 3 - 3

 

10 = 3 x 3 + (3 : 3)

 

12 = 3 + 3 + 3 + 3

 

Sendo assim, eis como poderia ficar um hipotético relógio de parede de uma sala de aula de Matemática, elaborado apenas com quatro vezes o número 3 para cada valor do mostrador:

 

 

Será que é possível conceber um relógio semelhante a este, mas envolvendo sempre quatro vezes o valor 4 para cada valor do respetivo mostrador?

 

Após investigação aturada, seria interessante que surgisse uma proposta semelhante a esta:

 

 

 

 

Faça um estudo semelhante para um novo mostrador de relógio, formado apenas por quatro vezes o número 5 para cada valor desse mostrador.

 

Conexão matemática entre as potências de base dois, os números primos e os números perfeitos

Dezembro 11, 2011

Paulo Afonso

Tem sido apanágio deste blog evidenciar a Matemática como ciência global, isto é, onde os conceitos parecem interligar-se uns com os outros como que unidos por qualquer obra divina! Desta feita irei expor o resultado da reflexão que efetuei a propósito de pesquisas relacionadas com os conceitos matemáticos que dão nome a este artigo.

 

Começo por propôr uma investigação que permita identificar se haverá alguns números primos que resultem da diferença entre as várias potências de base dois, com expoente natural, e a unidade.

 

Uma possível solução passa por se fazer uma teste para as primeiras dez potências de base 2:

 

n = 121 - 1 = 2 - 1 = 1
n= 222 - 1 = 4 - 1 = 3
n = 323 - 1 = 8 - 1 = 7
n = 424 - 1 = 16 - 1 = 15
n = 525 - 1 = 32 - 1 = 31
n = 626 - 1 = 64 - 1 = 63
n = 727 - 1 = 128 - 1 = 127
n = 828 - 1 = 256 - 1 = 255
n = 929 - 1 = 512 - 1 = 511
n= 10210 - 1 = 1024 - 1 = 1023

 

Tendo em conta todas as diferenças obtidas, existem algumas que são números primos: 3, 7, 31, 127 e 511. À exceção do 1, os restantes são, pois, números compostos por admitirem mais divisores além deles próprios e da unidade.

 

Ora, centremo-nos nos números que são primos: 3, 7, 31, 127 e 511. Multipliquemos cada um deles pela mesma potência de base dois que lhe deu origem mas subtraindo ao expoente uma unidade. Que produtos se irão obter?

 

Uma tabela semelhante à anterior poderá ser um precioso auxílio:

 

n = 23 x 2n-1 = 3 x 2 = 6
n = 37 x 2n-1 = 7 x 4 = 28
n = 531 x 2n-1 = 31 x 16 = 496
n = 7127 x 2n-1 = 127 x 64 = 8128
n = 9511 x 2n-1 = 511 X 256 = 130816

  

Uma particularidade interessante é o facto de todos os produtos obtidos serem números pares. Investiguemos, agora, acerca dos divisores dos três primeiros (6, 28 e 496). Quais são os divisores de cada um?

 

Recorrendo ao processo de fatorização em fatores primos temos os seguintes resultados:

 

Fatorização do 6Fatorização do 28Fatorização do 496
  

 

6 = 2 x 328 = 22 x 7496 = 24 x 31

 

Tendo em conta os expoentes dos fatores primos de cada fatorização podemos saber o número de divisores de cada número. Assim, no caso do 6, os expoentes dos fatores são 1 e 1, pelo que este número terá (1 + 1) x (1 + 1) = 2 x 2 = 4 divisores:

 

 

Por sua vez, os fatores do 28 têm expoentes 2 e 1, pelo que este número terá (2 + 1) x (1 + 1) = 3 x 2 = 6 divisores:

 

 

Já o 496 terá (4 + 1) x (1 + 1) = 5 x 2 = 10 divisores:

 

 

Qual será, para cada caso, a soma dos seus divisores próprios, isto é, a soma de todos os divisores do número, excluindo ele próprio?

 

Vejamos:

a) 1 + 2 + 3 = 6

b) 1 + 2 + 4 + 7 + 14 = 28

c) 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496

 

Constata-se, pois, que em cada caso a soma dos divisores próprios do número coincide com esse número. Logo, o 6, o 28 e o 496 fazem parte de um fascinante conjunto de números designado por conjunto dos números perfeitos.

 

A este propósito sugiro a consulta do seguinte site: http://www.ime.usp.br/~leo/imatica/historia/nperfeitos.html.

 

Será que o 8128 e 130816 também são números perfeitos? A ser assim, qual o procedimento algorítmico que permite a sua obtenção?

 

 

Explorando o factorial do número

Janeiro 24, 2010

Paulo Afonso

Em Matemática existem alguns tipos de números que, quando colocados em sequência, crescem de uma forma muito rápida, pois o seu padrão de crescimento aponta nesse sentido. Veja-se, por exemplo, a sequência dos números cúbicos: 1, 8, 27, 64, 125, ... ou a sequência das potências de base dois: 1, 2, 4, 8, 16, 32, 64, 128, 256,... Contudo, outras há cujo padrão de crescimento é mais lento, como seja o caso dos números naturais: 1, 2, 3, 4, 5, 6,... ou dos números pares: 2, 4, 6, 8, 10, 12, ...

 

O conjunto de números que apresento a seguir também evidencia crescer muito rapidamente, pois a lei geral que os gera leva a que isso aconteça: 1, 2, 6, 24, 120, 720, 5040, ... Qual o próximo termo da sequência?

 

Talvez influenciados pelo título deste artigo, facilmente poderemos verificar que:

1 = 1

2 = 2 x 1

6 = 3 x 2 x 1

24 = 4 x 3 x 2 x 1

120 = 5 x 4 x 3 x 2 x 1

720 = 6 x 5 x 4 x 3 x 2 x 1

5040 = 7 x 6 x 5 x 4 x 3 x 2 x 1

Continuando este padrão de crescimento, o próximo termo resultará do seguinte produto 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1, isto é, será o número 40320.

 

Sendo assim, facilmente se percebe que estamos perante uma sequência numérica muito especial, que é a que resulta dos factoriais dos números naturais (n!). De facto, 1 = 1!, 2 = 2!, 6 = 3!, 24 = 4!, 120 = 5!, 720 = 6!, 5040 = 7! e, logicamente, 40320 = 8!

 

Tendo em conta esta regularidade, qual o factorial do número 10?

 

Esta questão é facilmente resolvida pelos seguintes cálculos: 10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 3628800.  

 

Este tipo de números revela ser muito importante em vários temas matemáticos, como seja o caso das permutações, das combinações ou dos arranjos.

 

Imaginemos que quatro atletas de salto em altura estão a disputar a final de uma prova muito importante. Sabendo-se que os seus nomes são Artur, Bento, Carlos e Daniel, como pode ser pensada a recepção das medalhas dos três elementos pertencentes ao pódio, isto é, 1º, 2º e 3º lugares? No fundo, pergunta-se como poderá ser formado o pódio?

 

Note-se que um destes quatro atletas não terá acesso ao pódio, pelo que poderemos tentar prever quantas são as combinações possíveis de três dos quatro atletas poderem ser os premiados.

 

Sendo assim, há quatro combinações. Uma delas deixará o Artur de fora do pódio, outra deixará o Bento, uma terceira possibilidade é a que deixa o Carlos excluído e a quarta combinação envolve apenas os atletas Artur, Bento e Carlos, ficando, pois, o Daniel de fora do pódio. Vejamos as quatro combinações possíveis:

 

a - Bento, Carlos e Daniel,

b - Artur, Carlos e Daniel,

c - Artur, Bento e Daniel,

d - Artur, Bento e Carlos.

 

Estas 4 combinações de três atletas resultam da aplicação do respectivo algoritmo aos quatro atletas:

 

4C3 = 4! / (4 - 3)! x 3! = 4 x 3 x 2 x 1 / 1 x 3 x 2 x 1 = 24 / 6 = 4.

 

Realmente, o tema das combinações está associado ao factorial do número. Contudo somente a sua associação ao tema das permutações nos permite encontrar a resposta para o desafio colocado.

 

De facto, note que para o caso em que é o Artur a ficar excluído do pódio há seis possibilidades de o mesmo ser formado:

 

A B C D E F

1º Bento

2º Carlos

3º Daniel

1º Bento

2º Daniel

3º Carlos

1º Carlos

2º Daniel

3º Bento

1º Carlos

2º Bento

3º Daniel

1º Daniel

2º Bento

3º Carlos

1º Daniel

2º Carlos

3º Bento

 

Note-se, pois, que este valor 6 resulta de se permutarem de posição estes 3 atletas. Logo, trata-se de mais um caso de aplicação do factorial do número, pois 6 = 3!

 

Se isto é verdade para o caso de ter sido o Artur (A) a ficar excluído do pódio, também o é para o caso de ter sido o Bento (B), ou o Carlos (C) ou o Daniel (D).

 

Logo, a tabela seguinte evidencia as 24 possibilidades de constituição do pódio, pois 4 x 3! = 4 x 6 = 24:

 

B - C - D B - D - C C - D - B C - B - D D - B - C D - C - B
A - C - D A - D - C C - D - A C - A - D D - A - C D - C - A
A - B - D A - D - B B - D - A  B - A - D D - A - B D - B - A
A - B - C A - C - B B - C - A B - A - C C - A - B C - B - A

 

Em síntese, a resposta para o desafio colocado é esta das 24 possibilidades, que mais não são do que 24 arranjos de quatro atletas, três a três. Logo, conclui-se que os arranjos de quatro atletas, três a três, é o produto das combinações desses quatro atletas, três a três, pelo factorial de três:

 

4A3 = 4C3 x 3! = 4 x 6 = 24

 

Vejamos um novo caso envolvendo o factorial de um número:

 

Tendo em conta os seguintes números: 10, 20, 30, 0, 50, 60, 70, 80, 90, como se poderá obter a soma 100, usando apenas três parcelas não repetidas?

 

Esta tarefa permite que se encontrem os seguintes quatro casos:

a) 70 + 20 + 10

b) 60 + 30 + 10

c) 50 + 40 + 10

d) 50 + 30 + 20

 

Tendo em conta estas quatro decomposições do número 100, será possível converter a figura seguinte num triângulo mágico de soma 100, isto é, poder-se-ão preencher os círculos com os valores envolvidos nestas adições para que a soma em cada lado do triângulo seja sempre 100?:

 

 

 

Este desafio leva a que tentemos testar as quatro somas, três de cada vez, pelo que o tema das combinações volta a estar presente. Uma vez mais, combinando as 4 somas, três a três, obtém-se o valor 4:

 

4C3 = 4! / (4-3)! x 3! = 4 x 3! / 3! = 4

 

Eis as quatro combinações:

1 - a) - b) - c)

2 - a) - b) - d)

3 - a) - c) - d)

4 - b) - c) - d)

 

Testemos caso a caso:

1º caso com as seguintes adições:

a) 70 + 20 + 10               b) 60 + 30 + 10                  c) 50 + 40 + 10

 

Como facilmente se pode constatar, este é um caso de impossibilidade, porque existe uma parcela comum a todas as adições, que é o valor 10. Logo, o mesmo nunca poderia pertencer à figura devido ao facto de, no máximo, um valor apenas poder pertencer a duas adições.

 

Testemos o 2º caso, com as seguintes adições:

a) 70 + 20 + 10         b) 60 + 30 + 10          d) 50 + 30 + 20

 

Note-se que entre a) e b) há apenas um valor comum, que é o 10. Por sua vez, entre a) e d) também só existe um valor comum, que é o 20. Por último, entre b) e d) existe outro valor comum, que é o 30. Logo, serão estes os valores a fazerem parte dos vértices do triângulo, por pertencerem, em simultâneo a duas adições. Os restantes são colocados nos espaços sobrantes, pelo que se consegue obter uma figura mágica de soma 100:

 

 

Testemos, agora, o 3º caso, que contempla as seguintes somas:

a) 70 + 20 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Entre a) e c) existe o valor 10 como sendo o único comum; entre a) e d) existe o valor 20 e entre c) e d) existe o valor 50. Usando-os nos vértices e os restantes nos espaços sobrantes, voltamos a obter um novo caso de sucesso:

 

 

Resta testar o 4º caso, formado pelas seguintes adições:

b) 60 + 30 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Ora, entre b) e c) existe o valor 10 comum; já entre b) e d) é o valor 30 e entre c) e d) é o valor 50. Testando estes valores, obtém-se um terceiro caso de sucesso, diferente dos dois anteriores:

 

 

Existem, pois, três respostas possíveis para a tarefa enunciada. Uma vez mais, o recuso o factorial do número teve aplicação na resolução da mesma.

 

Se cinco pessoas costumarem viajar todos os dias no mesmo carro, ao fim de quantos dias estará a repetir-se a forma como as mesmas vão sentadas nos cinco lugares desse carro? (nota: todos podem conduzir o carro, mas só mudam de posição ao iniciar um novo dia).

 

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"