Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Sequências numéricas contendo dízimas infinitas periódicas

Outubro 15, 2011

Paulo Afonso

Em Matemática ouvimos muitas vezes falar em dízimas infinitas periódicas e a minha reflexão visa conectar este tipo de números ao tema das regularidades e padrões numéricos.

 

Vejamos, qual será o número a dar continuidade a esta sequência numérica:

 

5;     6,(6);     10;     16;     26,(6);     ______;

 

Aparentemente esta tarefa não é de fácil resolução ou de resolução imediata, pois não surge evidente a lei de crescimento desta sequência numérica. Contudo, a existência de duas dízimas infinitas periódicas neste conjunto de cinco números poderá servir de chave para a resolução deste desafio.

 

Assim sendo, a minha sugestão vai no sentido de se converter cada dízima na respetiva fração. Recordemos o procedimento matemático para que isso possa ocorrer. Como o período de ambas as dízimas ocorre logo ao nível das décimas, podemos seguir os seguintes cálculos:

 

x = 6,(6) <=> 10x = 66,(6)

 

10x - x = 66,(6) - 6,(6) <=>

<=> 9x = 60 <=>

<=> x = 60/9 <=>

<=> x = 20/3

 x = 26,(6) <=> 10x = 266,(6)

 

10x - x = 266,(6) - 26,(6) <=>

<=> 9x = 240 <=>

<=> x = 240/9 <=>

<=> x = 80/3

 

Será que a identificação das respetivas frações ajuda a interpretar a sequência numérica?:

 

5;     20/3;     10;     16;     80/3;     ______;

 

Em contexto de sala de aula é bem possível que um dos vários alunos possa avançar com a proposta de que a fração 80/3 é equivalente à fração 160/6. Se esta sugestão não ocorrer, pode ser indicada pelo professor, no sentido de que os resolvedores não desanimem e, consequentemente, desistam.

 

No fundo, o que se pretende é olhar para a sequência numérica neste novo formato:

   

5;     20/3;     10;     16;     160/6;     ______;

 

Ajuda?

 

Talvez, pois poderá haver alguém que sugira a conversão de todos os números inteiros para as respetivas frações. Eis uma aproximação interessante:

 

 

10/2;     20/3;     40/4;     80/5;     160/6;     ______;

 

Logicamente que quando esta conversão for feita, o desafio colocado ficará imediatamente resolvido, pois facilmente se percebe que estamos perante números fracionários cujos denominadores são os números naturais, iniciados no 2, e os respectivos numeradores são dobros sucessivos de cinco (10 = 2 x 5; 20 = 2 x 2 x 5; 40 = 2 x 2 x 2 x 5; 80 = 2 x 2 x 2 x 2 x 5; 160 = 2 x 2 x 2 x 2 x 2 x 5). Logo, poder-se-á concluir que os numeradores dessas frações resultam do produto das potências de base dois, de expoente natural, com o cinco (10 = 21 x 5; 20 = 22 x 5; 40 = 23 x 5; 80 = 24 x 5; 160 = 25 x 5).

 

Neste momento é fácil avançar com o número que dá continuidade à sequência numérica, pois o numerador será 26 x 5, isto é, o valor 320, e o denominador será o valor 7:

 

 

10/2;     20/3;     40/4;     80/5;     160/6;     320/7;

 

Note-se que este 6º termo da sequência volta a ser uma dízima infinita periódica cujo período é o seguinte: 714285. A dízima é, pois, a seguinte: 45,(714285).

 

Ora, os numeradores destas frações podem ser conectados a uma outra disposição numérica, baseada no conceito de Triângulo de Pascal, em que o valor inicial e os que iniciam e terminam cada linha deixam de ser uns para serem cincos:

 

 

Que tipo de conexão matemática é, pois, possível fazer-se entre os numeradores das frações da sequência numérica e esta figura?

 

Uma vez que referimos as potências de base dois, de expoente natural,  a multiplicar com o fator 5, termos de efetuar as somas dos valores existentes em cada linha horizontal da figura:

 

 

Fica, pois, confirmada esta possibilidade de conectar matematicamente a sequência numérica inicial com esta figura numérica.

 

Mas as conexões matemáticas não se ficam por aqui. Voltemos ao 6º termo da sequência numérica: 45,(714285). Centremo-nos no seu período: 714285 e dividamo-lo por 5. Obteremos o valor 142857.

 

Comparem-se os dígitos existentes neste quociente com os dígitos do dividendo. O que poderemos concluir?

 

Curioso, não é? Os dígitos são, de facto, os mesmos, apesar de estarem posicionados de forma diferente!

 

Multiplique, agora, este quociente obtido por 3, por 4 e por 6. O que pode concluir?

Relações aritméticas e pensamento algébrico

Novembro 09, 2009

Paulo Afonso

Estava eu folheando um interessante livro intitulado "The Moscow Puzzles"*, de Boris Kordemsky, editado por Martin Gardner, quando me deparei com uma enigmática situação envolvendo alguns números naturais consecutivos, organizados de acordo com a figura seguinte:

 

 

* - Kordemsky, B. (1992). The Moscow Puzzles. 359 Mathematical Recreations. New York: Dover Publications.

 

 

Uma primeira apreciação que aí é feita pelo autor é a que refere que o último número de cada coluna é um número quadrado:

 

 

De seguida é referido que o produto de dois números adjacentes numa mesma linha encontra-se nessa linha:

 

 

A título de exemplo, veja-se que 5 x 11 = 55 ou 2 x 6 = 12 ou 4 x 8 = 32.

Também é salientada outra curiosidade: o produto em cada caso referido no aspecto anterior encontra-se à direita do menor dos factores tantas colunas quanto o valor desse menor factor. A título de exemplo, o produto de 5  por 11 encontra-se 5 colunas à direita do menor factor, que é o 5. Por sua vez, o produto de 4 por 8 encontra-se 4 colunas à direita do 4.

Que outras ilações podemos extrair deste conjunto de valores, expostos desta forma?

Podemos, por exemplo, pensar numa forma de se conhecer o valor central de cada coluna. A tabela seguinte associa o número da coluna ao respectivo valor central:

 

Nº da Coluna Respectivo Valor Central
1 1
2 3
3 7
4 13
5 21
... ...
n ?

 

Note-se que não se querendo inferir uma lei geral para se obter qualquer valor central de cada coluna a partir do número da coluna a que pertence, bastaria saber o início e o final de cada coluna e calcular-se a respectiva média aritmética!

Ora, voltando aos valores da tabela, pode-se observar que:

12 - 0 = 1

22 - 1 = 3

32 - 2 = 7

42 - 3 = 13

52 - 4 = 21

Logo, pode-se concluir que para uma coluna "n", o seu valor central será obtido através da seguinte lei geral: n2 - (n - 1).

Desenvolvendo esse algoritmo, fica: n2 - n + 1, isto é: n (n - 1) + 1. Assim, basta multiplicar-se o valor da coluna pelo seu antecedente e ao produto obtido adicionar uma unidade.

A título de exemplo, confirmemos para a oitava coluna. Ora 8 x 7 + 1 = 57. É, de facto, este o valor existente na anterior disposição numérica!

Se é fácil descobrir-se o valor final de cada coluna, por ser sempre um número quadrado, e sendo o quadrado do valor da coluna respectiva, será que também é fácil descobrir a lei geral que permite obter o valor inicial de cada coluna? (1, 2, 5, 10, 17, ...).

A tabela seguinte ajudará na análise dos dados:

 

Número da Coluna Respectivo Valor Inicial
1 1
2 2
3 5
4 10
5 17
... ...
n ?

 

Note-se que:

1 = 12 - 2 x 1 + 2

2 = 22 - 2 x 2 + 2

5 = 32 - 2 x 3 + 2

10 = 42 - 2 x 4 + 2

17 = 52 - 2 x 5 + 2

Assim n2 - 2 x n + 2 será a lei geral que facilmente nos permite obter qualquer número inicial para cada coluna, conhecendo-se o número da coluna (n).

Qual será a lei geral que permite obter, nestas condições, a soma de cada coluna, conhecendo-se apenas o número da coluna?

Explorando hexágonos regulares

Janeiro 26, 2009

Paulo Afonso

À semelhança do triângulo equilátero e do quadrado, o hexágono regular é um polígono que tem a particularidade de fazer muito boas pavimentações. Aliás, o mesmo pode ser comprovado pelo texto do meu amigo José Filipe, no seu blog: www.maismat.blogspot.com. De facto, a figura seguinte evidencia um excelente aproveitamento do espaço a pavimentar:

Numa situação de recreação matemática como distribuiria os números 1, 2, 3, 4, 5, 6, 7 nesses sete hexágonos de modo a que a soma de quaisquer três hexágonos adjacentes em linha vertical ou linha oblíqua fosse sempre a mesma?

Por tentativas a resposta poderá ser a seguinte:

Em contexto de sala de aula seria interessante que os alunos pudessem associar este desafio ao conceito de média aritmética, que neste caso é o valor 4, pois o total (28) a dividir pelo número de elementos da sequência numérica (7) origina esse valor.

Contudo, caso os alunos ainda não estejam na posse desse conceito, podem ser levados a concluir que a sequência numérica é susceptível de ter a seguinte interpretação:

- O valor central é o 4.

- 1 + 7 = 8.

- 2 + 6 = 8.

- 3 + 5 = 8.

Logo, a soma da linha vertical e de cada linha oblíqua, de três parcelas, seria sempre 12, pois 4 + 8 = 12.

Tendo em conta o raciocínio anterior, os alunos também poderiam ser desafiados a realizar tarefas semelhantes para os dois casos seguintes: (a) sequência numérica composta pelos sete primeiros números ímpares e (b) sequência numérica composta pelos sete primeiros números pares.

Eis as possíveis soluções:

NÚMEROS ÍMPARES NÚMEROS PARES
SOMA MÁGICA --- 21 SOMA MÁGICA --- 24

De facto, uma possível explicação passa pelos esquemas seguintes: 

Pense, agora, em como distribuir os sete primeiros números naturais de modo a que a soma dos três valores centrais, indicados pela seta, seja a terça parte da soma dos quatro valores envolvidos nas linhas oblíquas acima e abaixo dessa linha central:

Fazendo-se o estudo, equivale a encontrar-se uma soma para a linha central que é a terça parte da soma envolvendo os restantes quatro números dos quatro restantes hexágonos. Por outras palavras, a soma desses quatro valores tem de ser um valor que é triplo do valor da soma da linha central. Por outro lado sabemos que o total dos sete números implica uma soma de 28. Logo, basta resolver-se a seguinte igualdade: 3x + x = 28 para se saber o valor da soma da linha central, que é 7. Consequentemente, a soma dos outros quatro valores terá de ser 3 x 7 = 21. 

Ora, o valor 7 só pode ser obtido através das seguintes parcelas: 1, 2 e 4, pois 1 + 2 + 4 = 7.

Já o valor 21 pode ser decomposto em 10 + 11, que é, respectivamente, (7 + 3) e (6 + 5). Por outro lado também pode ser decomposto em 9 + 12, que é, respectivamente, (6 + 3) e (7 + 5). Logo, os dois casos de resolução correcta são os seguintes:

Um estudo semelhante a este pode ser feito para o seguinte desafio: As duas figuras seguintes são uma mesma e usando apenas os sete primeiros números naturais procure distribuí-los nos sete hexágonos de modo a que a soma das duas linhas centrais seja sempre a mesma e igual à soma dos valores dos restantes quatro hexágonos:

Eis duas possíveis resoluções: 

Haverá mais alguma solução? Encontre-a, justificando o seu raciocínio.

A terminar esta reflexão distribua os dezanove primeiros números naturais nos seguintes dezanove hexágonos, de modo a que a soma de quaisquer hexágonos adjacentes (3, 4 ou 5), perfazendo uma linha completa, seja sempre 38. Repare que alguns desses números já se encontram na posição correcta:

Descobrindo médias aritméticas

Novembro 25, 2008

Paulo Afonso

Como facilmente se pode calcular, a média dos nove primeiros números ímpares (1, 3, 5, 7, 9, 11, 13, 15, 17) é 9, pois a sua soma (81) a dividir pelos nove elementos origina, de facto, esse valor 9.

Além disto, como se trata de uma progressão aritmética, o cálculo da média passa pela obtenção da semi-soma dos seus valores extremos (1 + 17) / 2.

Sabe-se também que, 1 + 17 = 18 e (1 + 17) / 2 = 9; 3 + 15 = 18 e (3 + 15) / 2 = 9; 5 + 13 = 18 e (5 + 13) / 2 = 9; 7 + 11 = 18 e (7 + 11) / 2 = 9.

Tendo em conta o raciocínio anterior, outra forma gráfica de se obter facilmente este valor médio passa pela  elaboração de um quadro como o seguinte:

1 3 5
7 9 11
13 15 17

Note que o valor central coincide com a média desses nove números. O mesmo é válido para quaisquer nove números ímpares consecutivos, como atesta, por exemplo, esta nova situação:

3 5 7
9 11 13
15 17 19

Tendo em conta algumas relações que se podem encontrar nos quadros anteriores, tente identificar um processo de cálculo imediato do valor médio de outros nove números ímpares consecutivos, em que o menor deles é o número 21 (faça o respectivo quadro apenas para confirmar a sua conjectura.

É do senso comum o conhecimento de que um qualquer número par também é sempre o valor médio dos respectivos números pares que o antecedem e sucedem. Sendo assim, é espectável que o estudo acabado de fazer para os números ímpares também possa ser feito para os números pares:

2 4 6
8 10 12
14 16 18

De facto, 10 é o valor médio daqueles nove números. Curiosamente verifica-se que este valor médio é também o valor médio dos dois valores médios apresentados nos dois quadros acima, envolvendo apenas números ímpares.

Tendo em conta esta relação acabada de identificar, encontre rapidamente os noves números pares consecutivos que têm como média o número 30  (faça o respectivo quadro apenas para confirmar a sua conjectura). 

Complete, também, o quadro seguinte de modo que qualquer valor colocado entre outros dois represente a sua média. No final  averigúe se o valor central é ou não coincidente com o valor médio dos nove números desse quadro:

5   17
        
25    

A beleza matemática dos números triangulares

Outubro 23, 2008

Paulo Afonso

Num dos artigos anteriores tive a oportunidade de me pronunciar acerca de um determinado tipo de números que tinham a particularidade de originar figuras triangulares. Referia-me, na altura, aos números triangulares, cujos seis primeiros termos da sequência são os seguintes: 1, 3, 6, 10, 15, 21...

De entre várias conexões matemáticas que este tipo de números permite estabelecer*, como seja aos números quadrados ou ao triângulo de Pascal, irei associá-los ao conceito de média aritmética, ao conceito de número primo e ao conceito de potência de expoente natural.

* - Afonso, P. (2006). A Magia Conexões Matemáticas - Um caso envolvendo números triangulares. Educação e Matemática, 90, Novembro/Dezembro, 35-38.

Sendo assim, imagine que era desafiado a dividir aqueles seis primeiros elementos da sequência de números triangulares em dois grupos de igual valor numérico e em que cada um dos dois grupos era formado por metade desses elementos.

A figura seguinte permite auxiliar a visualização desta proposta, pois sugere-se que as parcelas de cada um dos grupos sejam colocadas nos triângulos azuis, e as respectivas somas ao centro de cada hexágono amarelo:

Como actividade de recreação matemática, esta situação poderia ser resolvida por tentativas:

Obviamente que em termos de sala de aula de matemática seria desejável que os alunos adicionassem esses seis termos da sequência, cujo valor é 56 e dividissem por dois para encontrarem o valor de cada metade, que é 28.

Ora, baseando-nos neste tipo de imagem, verifica-se que mantendo-se a média no valor 28, estes seis números triangulares permitem a constituição de outros pares de somas, em que cada uma delas continua a resultar da adição de três parcelas:

Note-se que as somas envolvidas nestas figuras são sempre pares.

Será que os restantes valores pares, agrupados segundo os seguintes pares ordenados [(22, 34); (20, 36); (18, 38); (16, 40); (14, 42); (12, 44); (10, 46); (8, 48); (6, 50)] permitem também casos de sucesso em figuras semelhantes às que acabo de mostrar? Será, certamente, uma investigação interessante a fazer-se...

O mesmo será dizer-se relativamente aos pares de números envolvendo somas ímpares, mas mantendo-se a mesma média de 28 valores. Use a figura seguinte para fazer este novo estudo:

Note-se a curiosidade de para o par de somas (19, 37) se conseguirem obter dois casos de sucesso:

É, pois, desafiador fazer-se o estudo para os restantes pares de somas ímpares e de média 28, usando-se apenas figuras semelhantes às anteriores, isto é, que envolvam três parcelas para cada soma.

Como tenho feito em outros artigos, este tema também permite múltiplas extensões.

Veja o exemplo de se sentir desafiado a dividir estes seis números triangulares em dois novos grupos, formado cada um por três elementos, de modo que uma soma seja o triplo da outra...

Uma vez mais, eis um possível caso de sucesso, envolvendo as somas 42 e 14:

Divida agora esses seis números, de modo a formar dois grupos cujas somas são dois números primos.

Se investigar este caso, provavelmente irá concluir que o número de termos envolvido em cada soma não será igual, o que obrigará a recorrer a outro tipo de figuras. Eis uma solução possível:

Conclui-se, pois, que este conjunto de números revela ter grandes possibilidades de exploração pedagógica.

Termino com o seguinte desafio: usar uma figura semelhante à anterior para se obterem duas somas em que uma é o quadrado da outra. 

Descoberta de números

Julho 25, 2008

Paulo Afonso

Numa perspectiva de recreação matemática, o tema da descoberta de um conjunto de números, supostamente secretos, costuma atrair bastantes resolvedores para a tentativa de perceber a razão mágica de tal suceder.

Imagine que era solicitado a descobrir um conjunto de cinco números inteiros, múltiplos de quatro e consecutivos. Além disto sabia que cada um deles havia sido multiplicado por um mesmo valor numérico, que pode ser, por exemplo, o valor três e sabia a soma dos respectivos produtos obtidos. Como procederia para descobrir esse conjunto de cinco números?

 

Esta situação, transposta para a sala de aula, poderia servir para se explorar o conceito de progressão aritmética, de média aritmética ou para reforçar a ideia de que a Matemática pode ser encarada com a ciência dos padrões. Veja-se o exemplo formado pelos seguintes cinco números, múltiplos de quatro, o que implica que a razão da progressão seja o valor quatro: 20, 24, 28, 32 e 36.

Ora, multiplicando cada valor por três, origina os seguintes produtos: 60, 72, 84, 96 e 108. A soma destes produtos é 420. Conhecendo-se apenas os dados fornecidos pelo enunciado da tarefa, o que poderá fazer-se é a divisão da soma dos produtos pelo valor três, para se obter a soma dos cinco valores da sequência numérica, que neste caso é 140. Depois, para se encontrar o valor central, basta dividir-se o número 140 por cinco, obtendo-se o valor 28. Sendo este o valor central da progressão aritmética, terá dois valores a antecedê-lo e outros dois a sucedê-lo, todos múltiplos de quatro e consecutivos . Logo, a sequência é a seguinte: 20, 24, 28, 32, 36. Imagine que usava uma qualquer sequência numérica, formada por cinco valores, dispostos em progressão aritmética e que os multiplicava por um determinado valor constante "x", obtendo-se uma soma de todos os produtos "y". Como procederia para descobrir a sequência de números inicial?

Alguma matemática nos calendários

Julho 22, 2008

Paulo Afonso

Como situação de Matemática Recreativa poder-se-ia pedir a um interlocutor para escolher três números seguidos, em linha ou em coluna, existentes num calendário, tipo o que se evidencia a seguir:

  

De seguida poder-se-ia pedir que pesquisasse como é que é possível descobrirem-se rapidamente esses três números.

 

Em situação de sala de aula esta situação seria muito interessante ser analisada, pois só exige que se conheça se os números seleccionados pertencem a uma mesma semana ou a semanas consecutivas. O que há a fazer é dividir a sua soma por três para se obter o valor central. Depois, no caso de os números pertencerem à mesma semana, facilmente se ficam a conhecer os dois números restantes, pois trata-se do antecessor e do sucessor desse valor central. No caso de os números pertencerem a semanas consecutivas, para se descobrir o menor dos três valores somente há que se subtrair sete unidades ao valor central. Por sua vez, adicionando-se sete unidades a esse valor central descobre-se o maior dos três números seleccionados. Trata-se de um desafio envolvendo explicitamente o conceito de média aritmética.

O caso dos calendários permite muitas outras explorações matemáticas, como por exemplo pedir para os alunos seleccionarem um conjunto de dezasseis números, formando um quadrado de quatro por quatro e descobrirem muito rapidamente a sua soma. Quer dar uma sugestão de possível resolução?

 

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"