Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Sequência numérica enigmática

Março 17, 2012

Paulo Afonso

Este blog tem dedicado alguma atenção às regularidades numéricas, pois são um ente matemático muito interessante para o desenvolvimento de relações matemáticas associadas ao pensamento algébrico.

 

Para esta minha nova reflexão escolhi a seguinte sequência:

 

1     9     36     100     225

 

O desafio será o de se perceber se existe algum tipo de regularidade neste conjunto de números. A existir alguma regularidade, sugere-se, de seguida, que se proponha o próximo elemento da sequência.

 

Uma análise cuidada a cada elemento da sequência leva-nos a concluir que todos são números quadrados:

 

12     32     62     102     152

 

Tendo em conta que esses números quadrados podem ser vistos como sendo potências de expoente 2, centremo-nos apenas nos valores das bases dessas potências. Assim sendo, facilmente nos poderemos aperceber de que os valores dessas bases fazem parte de uma outra sequência numérica muito interessante - sequência dos números triangulares.

 

Como poderá ser confirmado em outros artigos deste blog, a sequência de números triangulares é gerada pela seguinte lei geral (n2 + n) : 2, sendo "n" pertencente ao conjunto dos números naturais.

 

Tendo em consideração esta observação, será fácil dar continuação à sequência numérica, pois o número da base da próxima potência será o 6º número triangular: (62 + 6) : 2 = 21.

 

Logo, 212 dará continuidade à sequência numérica, ficando esta assim:

 

 

1     9     36     100     225    441

 

Contudo, em sala de aula de matemática seria interessante que os alunos pudessem constatar que cada elemento da sequência original, como número quadrado que é, poderia ser obtido da seguinte forma:

 

1 = 12

9 = (1 + 2)2

36 = (1 + 2 + 3)2

100 = (1 + 2 + 3 + 4)2

225 = (1 + 2 + 3 + 4 + 5)2

 

Logo, o próximo número resultaria de (1 + 2 + 3 + 4 + 5 + 6)2, ou seja, 441.

 

Por sua vez, também seria interessante que algum aluno pudesse associar cada um destes números quadrados à soma de vários números cúbicos, pois:

 

1 = 13

9 = 13 + 23

36 = 13 + 23 + 33

100 = 13 + 23 + 33 + 43

225 = 13 + 23 + 33 + 43 + 53

 

Sendo assim, o próximo número da sequência continuará a ser uma soma de vários números cúbicos: 13 + 23 + 33 + 43 + 53 + 63 = 441.

 

Se atendermos agora a dois quaisquer números consecutivos desta sequência e os subtrairmos, isto é ao maior subtraímos o menor, que tipo de números se obtêm? Serão eles também números enigmáticos, isto é, que despertam a nossa curiosidade em estudá-los? Poderão ser associados a algum tipo de figura geométrica? Poderão ser conectados a outros conceitos matemáticos, como sejam os números ímpares? 

Múltiplos conceitos matemáticos resultantes de uma observação apaixonada

Novembro 16, 2009

Paulo Afonso

Muitas actividades de recreação matemática requerem para a sua resolução de um sentido apurado de observação, isto é, exigem uma observação atenta, criterial ou, se quisermos, uma observação apaixonada pelas questões matemáticas que as sustentam.

O exemplo que trago para ilustrar a importância de uma observação intencional e reveladora de sentido de indagação baseia-se no seguinte conjunto de números:

Dedicando-se alguns minutos a observar a tabela numérica anterior, facilmente podemos descobrir relações matemáticas entre os seus elementos ou até recordar alguns conceitos matemáticos.

Sendo assim, um exemplo a destacar pode ser o conjunto de alguns múltiplos do 3. Exceptuando o valor zero, a tabela abaixo evidencia um padrão de natureza geométrica envolvendo alguns dos primeiros múltiplos do 3:

Repare-se que todos os valores seleccionados têm a particularidade da soma dos seus dígitos ser sempre um múltiplo do 3. Com isto poder-se-ia, em contexto de sala de aula, abordar o critério de divisibilidade por 3: "um número é divisível por 3 se a soma dos seus dígitos for múltipla de 3".

Repara-se, também, que o tema do mínimo múltiplo comum entre dois ou mais números também poderia ser explorado com esta figura:

A título de exemplo, de entre os múltiplos do 3 e os múltiplos do 5 existentes na tabela, com excepção do zero, como é óbvio, o mínimo múltiplo comum entre eles é o 15. Já entre o 3 e o 6 é o 12; por sua vez, entre o 5 e o 6 é o 30. Este valor 30 volta a ser o mínimo múltiplo comum entre o 3, o 5 e 6, como se pode observar na figura.

Este último exemplo poderia servir de base para se abordar o tema da factorização de números compostos em factores primos. Se o 3 e o 5 já são números primos, o 6 não o é; aliás é um número perfeito, pois a soma dos seus divisores próprios coincide com ele mesmo (1 + 2 + 3 = 6). Logo, o 6 pode ser decomposto num produto de factores primos, sendo um exemplo que prova o Teorema Fundamental da Aritmética, que diz que "qualquer número inteiro maior do que 1 é primo ou resulta num produto de factores primos".

Voltando à tabela inicial, a mesma permite outras explorações matemáticas, como sendo a evidência da propriedade comutativa da operação multipliação:

Veja-se que 3 x 10 = 30 e 10 x 3 = 30. Por sua vez, 5 x 6 = 30 e 6 x 5 = 30. Logo, estes casos podem servir de exemplos para que se conclua que o produto não se altera quando se permutam os respectivos factores.

O tema dos números figurados também pode ser associado a esta tabela. Veja-se o caso dos números quadrados:

Consta-se, pois, que uma das diagonais da figura é formada exclusivamente por números quadrados, logo poder-se-ia explorar essa sequência para se chegar à respectiva lei geral (n2), sendo "n" um número inteiro.

Veja-se a próxima figura e observe-se o que ela sugere:

Cada secção colorida pode ser objecto da seguinte análise:

a) 1

b) 2 x 4 = 8

c) 3 x 9 = 27

d) 4 x 16 = 64

e) 5 x 25 = 125

f) ...

Fixando a nossa atenção nos produtos apresentados nas alíneas anteriores, os mesmos são outro tipo de números figurados, neste caso os números cúbicos (n3):

a) 1 = 13

b) 8 = 23

c) 27 = 33

d) 64 = 43

e) 125 = 53

f) ... 

Sendo assim quer os números quadrados quer os números cúbicos, quer a relação entre ambos, poderão ser objecto de análise através desta tabela numérica.

Que tipo de números estão assinalados a seguir e qual o critério para se ver rapidamente se outros quaisquer pertencem a essa mesma família ou conjunto numérico?:

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"