Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Dar sentido aos números

Maio 27, 2012

Paulo Afonso

Por vezes questiono-me acerca do que é que as pessoas pensam ao contactarem com um determinado conjunto de símbolos numéricos a que chamamos vulgarmente, em contexto de aula de matemática, numerais.

 

Por exemplo, vejamos o seguinte conjunto de quatro numerais: 4, 12, 24, 40. O que pensamos ao vermos estes símbolos? Será que todos os analisamos da mesma forma? Será que para cada um de nós eles representam a mesma coisa? Deixo o desafio a cada um dos meus leitores poder escrever o que pensa acerca do conjunto destes quatro numerais.

 

Mas o que será expectável surgir da sua análise?

 

- Que o primeiro deles não se relaciona com os demais por ser o único que é formado por um só dígito?

 

- Que o segundo não se relaciona com os demais por ser o único cuja soma dos seus dígitos não origina um número par?

 

- Que os números estão relacionados através de um padrão ou regularidade? De facto:

4 = 4

12 = 4 + 8

24 = (4 + 8) + 12

40 = (4 + 8 + 12) + 16

 

- Que os números obedecem a uma regularidade ou padrão associada ao número quatro? De facto:

4 = (1 x 4)

12 = (1 x 4) + (2 x 4)

24 = (1 x 4) + (2 x 4) + (3 x 4)

40 = (1 x 4) + (2 x 4) + (3 x 4) + (4 x 4)

 

- Que todos se podem associar à tabuada do quatro? De facto:

4 = 4 x 1

12 = 4 x 3

24 = 4 x 6

40 = 4 x 10

  

Nota: Que tipo de números são os fatores da direita de cada uma das multiplicações anteriores?

 

 - Que todos se podem associar à tabuada do três, conjugada com a operação adição? De facto:

4 = 3 x 1 + 1

12 = 3 x 3 + 3

24 = 3 x 6 + 6

40 = 3 x 10 + 10

  

Nota: Que tipo de números são as parcelas da direita destas adições?

  

- Que todos se podem associar à tabuada do cinco, conjugada com a operação subtração? De facto:

4 = 5 x 1 - 1

12 = 5 x 3 - 3

24 = 5 x 6 - 6

40 = 5 x 10 - 10

 

Nota: Que tipo de números são os subtrativos destas subtrações?

 

- Que todos eles se podem decompor em somas de parcelas iguais? De facto:

4 = 2 + 2

12 = 6 + 6

24 = 12 + 12

40 = 20 + 20 

 

Nota: Que tipo de números são as parcelas da direita destas adições?

 

- Que todos eles podem ser decompostos em adições especiais, do tipo (x + x2) + (x + x2)? De facto:

4 = (1 + 12) + (1 + 12)

12 = (2 + 22) + (2 + 22) 

24 = (3 + 32) + (3 + 32) 

40 = (4 + 42) + (4 + 42)

 

- Que todos podem ser decompostos numa adição de um número oblongo [a x (a + 1)] com o dobro de um número triangular (n2 + n) : 2? De facto:

4 = 1 x 2 + 2 x 1

12 = 2 x 3 + 2 x 3

24 = 3 x 4 + 2 x 6

40 = 4 x 5 + 2 x 10

 

- Que outras interpretações podem ser feitas em relação a tão enigmática sequência numérica? Que número lhes poderá dar continuidade?

 

Perante a análise realizada acima, é desejável que se conclua o seguinte:

 

4 = 4

12 = 4 + 8

24 = (4 + 8) + 12

40 = (4 + 8 + 12) + 16

(4 + 8 + 12 + 16) + 20 = 60

 

4 = (1 x 4)

12 = (1 x 4) + (2 x 4)

24 = (1 x 4) + (2 x 4) + (3 x 4)

40 = (1 x 4) + (2 x 4) + (3 x 4) + (4 x 4)

(1 x 4) + (2 x 4) + (3 x 4) + (4 x 4) + (5 x 4) = 60

 

4 = 4 x 1

12 = 4 x 3

24 = 4 x 6

40 = 4 x 10

4 x 15 = 60

 

4 = 3 x 1 + 1

12 = 3 x 3 + 3

24 = 3 x 6 + 6

40 = 3 x 10 + 10

3 x 15 + 15 = 60

 

4 = 5 x 1 - 1

12 = 5 x 3 - 3

24 = 5 x 6 - 6

40 = 5 x 10 - 10

5 x 15 - 15 = 60

 

4 = 2 + 2

12 = 6 + 6

24 = 12 + 12

40 = 20 + 20

30 + 30 = 60

 

4 = (1 + 12) + (1 + 12)

12 = (2 + 22) + (2 + 22) 

24 = (3 + 32) + (3 + 32) 

40 = (4 + 42) + (4 + 42)

(5 + 52) + (5 + 52) = 60

 

4 = 1 x 2 + 2 x 1

12 = 2 x 3 + 2 x 3

24 = 3 x 4 + 2 x 6

40 = 4 x 5 + 2 x 10

5 x 6 + 2 x 15 = 60

 

Qual a lei geral para cada um dos oitos casos propostos na tabela acima? Com base nessas leis, qual o décimo elemento desta sequência numérica?

 

A título de exemplo, vejamos o último caso, em que se adiciona um número oblongo ao dobro de um número triangular. Ora, uma vez que a lei que gera os números oblongos é [n x (n + 1)] e a lei que gera os números triangulares é (n2 + n) : 2, então da sua adição resultam os seguintes cálculos:

 

[n x (n + 1)] + 2 x [(n2+ n) : 2] = n2+ n + n2+ n = 2n2+ 2n = 2n x (n + 1)

 

Logo, se n = 10, então 2 x 10 x (10 + 1) = 20 x 11 = 220

 

Comprove se, de facto, o valor 220 é o 10º elemento desta sequência nos restantes sete casos analisados. 

Números figurados em disposição geométrica - um caso de conexões matemáticas

Setembro 17, 2011

Paulo Afonso

Quando somos confrontados com situações de Matemática Recreativa, nem sempre conseguimos dar resposta imediata aos desafios colocados. Apostar na nossa capacidade de persistência acaba, muitas vezes, por ser uma boa tomada de decisão. O exemplo com que inicio mais um ano letivo, refletindo sobre esta importante área da recreação matemática, pretende debater este aspeto. Eis o desafio que coloco aos meus leitores:

 

Analise o conjunto de dados numéricos que compõem a figura seguinte e proponha os valores da próxima linha. Qual o critério para a essa sua seleção?

 

 

Provavelmente terá dificuldade, no imediato, de avançar com uma resposta válida, pois aparentemente os números da figura poderão parecer não ter relação entre si. Contudo, muitas poderão ser as abordagens a realizar e, o importante é que, enquanto resolvedores motivados para este tipo de desafios, não desistamos face a esta eventual dificuldade inicial.

 

Uma possível estratégia de resolução poderá passar por se calcular a soma em cada linha, no sentido de se averiguar se existe algum tipo de padrão ou regularidade numérica. Façamo-lo, então:

 

 

Curiosamente poderemos constatar que existe uma regularidade numérica entre as somas obtidas. De fato, de uma soma para a seguinte incrementa-se um valor que é sempre um número quadrado (22, 32, 42 e 52). Ora, continuando com este critério, saber-se-á a soma da linha seguinte, pois basta acrescentar à soma da última linha o valor 36, que é o quadrado de 6. Essa soma será, pois, o valor 91.

 

Significa isto, que os valores da figura inicial poderão ser substituídos exclusivamente por números quadrados:

 

 

Face a esta importante descoberta, ficará fácil avançar com uma proposta de valores para a linha que é solicitada na tarefa. A figura seguinte elucida a continuidade do padrão descoberto, confirmando a soma inferida acima:

 

 

Fica, pois, resolvida uma tarefa que inicialmente parecia ter um grau de dificuldade elevado. Desenvolver em cada um de nós a capacidade de persistência é, pois, um dos objetivos deste tipo de tarefas que proponho para reflexão conjunta.

 

Já ao nível da sala de aula de matemática seria interessante que os alunos, além de descobrirem este tipo de estratégia de resolução, não ficassem satisfeitos com ela e tentassem outras abordagens que a tarefa suscita.

 

Uma possível abordagem, diferente da sugerida acima, passa por se estabelecer uma relação aritmética a partir dos valores iniciais da tarefa:

 

Note-se que a relação estabelecida na figura acima possibilita o evidenciar de uma importante conexão matemática aos números triangulares. De fato, todos os fatores que multiplicam o valor 2, e o último valor de cada linha (1, 3, 6, 10, 15, ...), fazem parte deste conjunto de números figurados, tema ao qual já dedicámos muitos artigos neste blog.

 

Há, pois, uma lógica numérica que pode ser aplicada em todos os casos. De uma linha para a seguinte dobra-se o último número (triangular) da linha anterior e adiciona-se o próximo número triangular. Ora, tendo em conta este raciocínio, será fácil propor a próxima linha, que contempla já o próximo número triangular - 21:

 

 

Seria, pois, interessante, em sala de aula, que os alunos percebessem o "comportamento matemático" dos números envolvidos na figura inicial, assim trabalhada:

 

Saliente-se, então, que os valores a, c, d, e e f pertencem todos ao conjunto dos números triangulares, pelo que a próxima linha terá de ser a seguinte:

 

Sendo assim, substituindo as letras pelos respetivos valores numéricos, eis a confirmação dos números da última linha, bem como  da soma 91:

 

 

Em jeito de síntese, poder-se-á concluir que esta tarefa, aparentemente difícil, suscitou estes dois tipos de abordagem interessantes e complementares, permitido uma visão da Matemática como sendo a ciência dos padrões e em que os conceitos se conetam entre si!

 

Como sugestão, analise qual o conjunto de números a acrescentar na próxima linha da figura seguinte. Explique o critério de seleção:

 

 

Pontes geométricas - conexão aos números triangulares

Outubro 07, 2010

Paulo Afonso

Atravessar um rio dispondo apenas de uma pequena barcaça costuma estar associado a vários desafios de recreação matemática. De facto, uma rápida pesquisa na Internet, sobre (a) o pastor, o lobo, a ovelha e a couve, (b) o pastor, o gato, o canário e o saco de alpista, ou (c) os canibais e os missionários, entre outros, permite constar que são apenas alguns dos desafios de travessia de um rio que existem. Por norma exigem uma apurado raciocínio e a escolha de uma boa estratégia de resloução, como seja o esquema ou figura.

 

Contudo, a minha reflexão não irá incidir nesse tipo de modo de atravessar um rio, pois em vez de uma barcaça pretende-se atravessá-lo a pé através de pontes flutuantes, formadas exclusivamente por objectos geométricos.

 

Veja-se a ponte seguinte e tente atravessar para a margem direita do rio seguindo a seguinte regra: só se pode deslocar para baixo, sempre no sentido esquerda, direita. Quantas são as possibilidades que existem?

 

Numa perspectiva de resolução sistematizada, seria interessante atribuir a cada círculo uma referência, como seja um número ou uma letra:

 

De seguida poder-se-á fazer uma lista organizada, evidenciando todas as possibilidades que existem:

 

A-E-I

B-F-J

C-G-K

 

A-E-F-J

B-F-G-K

 

A-E-F-G-K

 

Existem, pois, 3 + 2 + 1 possibilidades, isto é, 6 possibilidades diferentes de atravessar esta ponte, de acordo com as regras estipuladas.

  

Imaginemos, agora, que se aumentava um novo objecto em cada uma das margens, bem como na coluna central, como ilustra a figura seguinte:

  

 

Mantendo as condições ou regras do enunciado anterior, quantas serão, agora, as possibilidades da travessia do rio?

  

Eis novamente a figura referenciada em cada um dos objectos geométricos:

  

  

Vejamos as possibilidades:

  

A-F-K

B-G-L

C-H-M

D-I-N

  

A-F-G-L

B-G-H-M

C-H-I-N

  

A-F-G-H-M

B-G-H-I-N

  

A-F-G-H-I-N

  

Note-se que as possibilidades passaram a ser 4 + 3 + 2 + 1 = 10.

  

Continuando a aumentar um objecto geométrico em cada margem e na coluna central, eis como fica a figura:

 

Atribuindo as respectivas marcas:

 

Vejamos a análise:

 

A-G-M

B-H-N

C-I-O

D-J-P

E-K-Q

 

A-G-H-N

B-H-I-O

C-I-J-P

D-J-K-Q

 

A-G-H-I-O

B-H-I-J-P

C-I-J-K-Q

 

A-G-H-I-J-P

B-H-I-J-K-P

 

A-G-H-I-J-K-Q

 

Verificam-se, pois, 5 + 4 + 3 + 2 + 1 = 15 possibilidades.

 

Em contexto de sala de aula seria interessante que os alunos fossem solicitados a identificar ou descobrir a regularidade numérica que suporta este conjunto de tarefas. Seria desejável que estabelecessem a seguinte relação: 6 + 4 = 10 e 10 + 5 = 15, no sentido de proporem a seguinte solução que seria 15 + 6 = 21 possibilidades de atravessar o rio na condição de se aumentar mais um objecto geométrico em cada margem e na coluna do meio.

 

Além disto, também seria desejável conectar esta regularidade ou padrão numérico ao tema dos números figurados, designadamente os números triangulares. De facto, como já tive oportunidade de reflectir em artigos anteriores, a sequência de números triangulares (1, 3, 6, 10, 15, 21, 28,...) é gerada pelo seguinte algoritmo (n2 + n) : 2, sendo "n" um número natural.

 

Sendo assim, poder-se-á reflectir acerca de como será a disposição dos objectos geométricos nas margens e na coluna centraldo rio, de modo a que o número de possibilidades de o atravessar coincida com o 10º número triangular. Qual a sua sugestão?

Análise numérica de padrões de natureza geométrica

Fevereiro 22, 2010

Paulo Afonso

O tema dos padrões e das regularidades tem sido, por diversas vezes, objecto de análise neste blog. O mesmo propicia o desenvolvimento do pensamento algébrico, quer seja em situações de recreação matemática, quer seja em situações de matemática mais formal.

 

As figuras seguintes visam evidenciar um padrão de crescimento, cuja natureza é geométrica. O desafio é o de se descobrir a figura seguinte que lhe dê continuidade e arranjar um qualquer tipo de fundamento que sirva de justificação para a decisão tomada.

 

Eis as figuras:

 

  

Uma possível abordagem a este desafio poderia passar por se olhar para cada uma das figuras como sendo a composição de outras figuras. Assim, a primeira figura poderia ser vista como sendo 1 quadrado unitário e um rectângulo de um por dois. Já a segunda figura poderia ser entendida como sendo 1 + 2 e um rectângulo de dois por três. Por sua vez, a terceira figura poderia ser vista como sendo 1 + 2 + 3 e um rectângulo de três por quatro. Continuando, a figura da direita poderia ser vista como sendo 1 + 2 + 3 + 4 e um rectângulo de quatro por cinco. Sendo assim, a próxima figura poderia ser formada pelos seguintes quadrados unitários: 1 + 2 + 3 + 4 + 5 e por um rectângulo de cinco por seis quadrados:

 

 

 

Em contexto de sala de aula seria interessante que os alunos dedicassem algum esforço no sentido de, ao perceberem o padrão de crescimento, descobrissem a sua lei de formação. Isto é, será fácil prever, por exemplo, quantos quadrados unitários existirão na décima figura desta sequência de figuras geométricas? Qual será a sua forma?

 

Comecemos por analisar o número de quadrados unitários utilizados em cada uma das quatro figuras iniciais:

 

3     9     18     30

 

Vejamos a seguinte regularidade:

 

1º -- 3

2º -- 9 = 3 + 2 x 3

3º -- 18 = 3 + 2 x 3 + 3 x 3

4º -- 30 = 3 + 2 x 3 + 3 x 3 + 4 x 3

 

Desta regularidade destaca-se a lei geral de que para uma qualquer posição "n", exceptuando a 1ª, a quantidade de quadrados unitários envolvida será obtida pelos seguintes cálculos: 3 + 2 x 3 + ... + n x 3. Logo, no caso da décima figura, o número de quadrados envolvidos será:

 

3 + 2 x 3 + 3 x 3 + 4 x 3 + 5 x 3 + 6 x 3 + 7 x 3 + 8 x 3 + 9 x 3 + 10 x 3 = 3 + 54 x 3 = 55 x 3 = 165.

 

Como em qualquer outra situação que envolva padrões ou regularidades deve estar sempre presente a preocupação de se melhorar ou até mesmo optimizar a estratégia de resolução a utilizar. Neste sentido, e fruto de uma observação, porventura, mais sistematizada e intencional, poder-se-á decompor cada valor numérico num determinado número e no seu dobro. Vejamos:

 

1º -- 3 = 1 + 2

2º -- 9 = 3 + 6

3º -- 18 = 6 + 12

4º -- 30 = 10 + 20

 

Por sua vez, se analisarmos os números afectos à 1ª parcela, em cada soma, verificamos que são sempre números triangulares (1, 3, 6, 10).

 

Logo, a próxima figura, a 5ª, seria formada pela adição do 5º número triangular e o seu dobro. Assim, 15 + 30 = 45, como pudemos verificar acima.

 

Dando continuidade a esta regularidade, confirma-se que a 10ª figura geométrica seria composta por 165 quadrados unitários, uma vez que o o 10º número triangular é o 55 [proveniente da aplicação da lei geral que gera os números triangulares (n2 + n) / 2] e o seu dobro é 110. Logo, 55 + 110 = 165.

 

Em síntese, poder-se-á concluir que cada  figura geométrica inicial é composta por uma figura triangular e uma figura oblonga, estando afectas a cada uma o respectivo número triangular e o respectivo número oblongo:

 

1

+

1 x 2

3

+

2 x 3

6

+

3 x 4

10

+

4 x 5

 

Uma vez que a lei geral que gera os números triangulares é a seguinte: (n2 + n ) / 2, e a dos números oblongos é o dobro desta, isto é, n2 + n, então a lei geral que origina a seguinte sequência numérica (3, 9, 18, 30, ...) resulta da adição das duas anteriores: (n2 + n) / 2 + n2 + n. Logo, a lei geral é a seguinte: 3 x (n2 + n) / 2. Testando-a, por exemplo, para a 10ª figura geométrica, confirma-se que o valor numérico respectivo é o 165, pois: 3 x (102 + 10) / 2 = (3 x 110) / 2 = 330 / 2 = 165.

Eis a figura, composta pela respectiva componente triangular e pela respectiva componente oblonga:

55

+

10 x 11

 

Tendo em conta este raciocínio, qual o número de quadrados unitários envolvidos na 15ª figura geométrica? Qual o respectivo número triangular e o respectivo número oblongo?

Múltiplos conceitos matemáticos resultantes de uma observação apaixonada

Novembro 16, 2009

Paulo Afonso

Muitas actividades de recreação matemática requerem para a sua resolução de um sentido apurado de observação, isto é, exigem uma observação atenta, criterial ou, se quisermos, uma observação apaixonada pelas questões matemáticas que as sustentam.

O exemplo que trago para ilustrar a importância de uma observação intencional e reveladora de sentido de indagação baseia-se no seguinte conjunto de números:

Dedicando-se alguns minutos a observar a tabela numérica anterior, facilmente podemos descobrir relações matemáticas entre os seus elementos ou até recordar alguns conceitos matemáticos.

Sendo assim, um exemplo a destacar pode ser o conjunto de alguns múltiplos do 3. Exceptuando o valor zero, a tabela abaixo evidencia um padrão de natureza geométrica envolvendo alguns dos primeiros múltiplos do 3:

Repare-se que todos os valores seleccionados têm a particularidade da soma dos seus dígitos ser sempre um múltiplo do 3. Com isto poder-se-ia, em contexto de sala de aula, abordar o critério de divisibilidade por 3: "um número é divisível por 3 se a soma dos seus dígitos for múltipla de 3".

Repara-se, também, que o tema do mínimo múltiplo comum entre dois ou mais números também poderia ser explorado com esta figura:

A título de exemplo, de entre os múltiplos do 3 e os múltiplos do 5 existentes na tabela, com excepção do zero, como é óbvio, o mínimo múltiplo comum entre eles é o 15. Já entre o 3 e o 6 é o 12; por sua vez, entre o 5 e o 6 é o 30. Este valor 30 volta a ser o mínimo múltiplo comum entre o 3, o 5 e 6, como se pode observar na figura.

Este último exemplo poderia servir de base para se abordar o tema da factorização de números compostos em factores primos. Se o 3 e o 5 já são números primos, o 6 não o é; aliás é um número perfeito, pois a soma dos seus divisores próprios coincide com ele mesmo (1 + 2 + 3 = 6). Logo, o 6 pode ser decomposto num produto de factores primos, sendo um exemplo que prova o Teorema Fundamental da Aritmética, que diz que "qualquer número inteiro maior do que 1 é primo ou resulta num produto de factores primos".

Voltando à tabela inicial, a mesma permite outras explorações matemáticas, como sendo a evidência da propriedade comutativa da operação multipliação:

Veja-se que 3 x 10 = 30 e 10 x 3 = 30. Por sua vez, 5 x 6 = 30 e 6 x 5 = 30. Logo, estes casos podem servir de exemplos para que se conclua que o produto não se altera quando se permutam os respectivos factores.

O tema dos números figurados também pode ser associado a esta tabela. Veja-se o caso dos números quadrados:

Consta-se, pois, que uma das diagonais da figura é formada exclusivamente por números quadrados, logo poder-se-ia explorar essa sequência para se chegar à respectiva lei geral (n2), sendo "n" um número inteiro.

Veja-se a próxima figura e observe-se o que ela sugere:

Cada secção colorida pode ser objecto da seguinte análise:

a) 1

b) 2 x 4 = 8

c) 3 x 9 = 27

d) 4 x 16 = 64

e) 5 x 25 = 125

f) ...

Fixando a nossa atenção nos produtos apresentados nas alíneas anteriores, os mesmos são outro tipo de números figurados, neste caso os números cúbicos (n3):

a) 1 = 13

b) 8 = 23

c) 27 = 33

d) 64 = 43

e) 125 = 53

f) ... 

Sendo assim quer os números quadrados quer os números cúbicos, quer a relação entre ambos, poderão ser objecto de análise através desta tabela numérica.

Que tipo de números estão assinalados a seguir e qual o critério para se ver rapidamente se outros quaisquer pertencem a essa mesma família ou conjunto numérico?:

Pensamento algébrico

Outubro 15, 2009

Paulo Afonso

Actividades que consigam levar os resolvedores a investigar o elemento que dê continuidade a um padrão ou uma regularidade, de natureza geométrica ou numérica, que lhe seja apresentada, costumam ser bastante motivadoras ao nível da recreação matemática.

Sequências numéricas, como as seguintes, costumam ser muitas vezes utilizadas para este tipo de objectivo:

a) 1, 2, 4, 8, 16, 32,...

b) 1, 8, 27, 64, ... 

c) 1, 3, 6, 10, 15, 21, ...

d) 1, 1, 2, 3, 5, 8, 13, 21, ...

Independentemente de estarmos perante os números quadrados, ou cúbicos, ou triangulares ou de fibonacci, ou perante qualquer regularidade geométrica, como as seguintes, o resolvedor é tentado a encontrar ou investigar o termo que lhes dá continuidade:

Ao nível da sala de aula seria muito importante que os alunos fossem solicitados a desenvolver o seu pensamento algébrico, isto é, a desenvolver a sua capacidade de estimação no sentido de se aventurarem na descoberta da generalização ou na procura da lei geral que sustenta ou está na base de determinadas regularidades ocorrerem.

Tentemos descobrir qual o último número existente na 40ª fila do triângulo numérico seguinte:

1

3          5

7          9          11

13          15          17          19

...

Que tipo de abordagem esta interessante tarefa suscita?

Uma primeira apreciação é a seguinte: trata-se de um triângulo formado exclusivamente por números ímpares. Logo, o número a descobrir também será originado pela seguinte lei geral: 2n - 1, sendo "n" um número natural.

Outra ilação interessante é a de que o número de elementos existentes em cada linha coincide com o número da linha. Logo, na 40ª linha haverá 40 números ímpares.

Sabe-se, também, que se o triângulo só tivesse uma linha, este seria formado apenas por 1 número; se tivesse só duas linhas já teria 3 números; se tivesse três linhas já teria 6 números; se tivesse apenas quatro linhas teria 10 números. Logo, será legítimo questionarmo-nos acerca de quantos números existirão num triângulo deste tipo formado por quarenta linhas.

Note-se que os números assinalados acima: 1, 3, 6, 10, ... fazem parte de uma interessante sequência numéria, tantas vezes já abordada neste blog - os números triangulares.

Como sabemos, pela reflexão em artigos anteriores, a lei que gera este tipo de números figurados é a seguinte (n2 + n) : 2. Logo, se substituirmos o "n" por 40, dar-nos-á a quantidade de números ímpares existentes num triângulo deste tipo, formado por quarenta linhas. Sendo assim, (402 + 40) : 2 = 820. Conclui-se, pois, que existirão 820 números ímpares. Esta conclusão ser-nos-á muito útil, pois ficamos a saber que o número a investigar será o 820º número ímpar. Sendo assim, basta-nos substituir o "n" por 820 na fórmula que gera os números ímpares: 2 x 820 - 1 = 1639.

Em princípio, o último número existente na 40ª fila será o 1639.

Haverá outras abordagens menos morosas a este desafio?

Ora a nossa atenção poderia ter ficado apenas na tentativa de relacionar o número de cada fila com o último número dessa fila, pois é isso que nos é solicitado. A ser assim, observemos a tabela seguinte: 

 Nº da fila  Último número da fila
 1  1
 2  5
 3  11
 4  19
 ...  ...

Note-se que conseguiremos obter cada valor da coluna da direita se multiplicarmos o respectivo valor da coluna da esquerda pelo seu sucessor e ao produto encontrado retirarmos uma unidade:

1 = 1 x 2 - 1

5 = 2 x 3 - 1

11 = 3 x 4 - 11

19 = 4 x 5 - 1

Logo, se o número 40 (40ª fila) for multiplicado por 41 (seu sucessor) e ao produto obtido for retirada uma unidade, obter-se-á, novamente, o valor 1639. De facto, 40 x 41 - 1 = 1639.

Confirma-se, pois, que há uma lei geral capaz de gerar o último número de cada fila, conhecendo-se apenas o número da fila a que esse número pertence: n x (n + 1) - 1, sendo "n" o número da fila.

Qual será o último número da 40ª fila do seguinte novo triângulo?

2

4          6          8

10          12          14          16          18

20          22          24          26          28          30          32

...

Números tetraédricos e conexão ao triângulo de Pascal e ao tema das combinações

Junho 22, 2009

Paulo Afonso

Os números figurados já foram várias vezes objecto de reflexão neste blog. Hoje não vou escrever exclusivamente ao nível da geometria do plano mas, também, ao nível do espaço.

Assim, como actividade de recreação matemática tente dar continuidade à seguinte sequência numérica:

1     4     10     20     ____

Provavelmente descobrirá a relação numérica evidenciada na tabela seguinte:

Números da sequência Sua obtenção
1 1
4 1 + 3
10 1 + 3 + 6
20            1 + 3 + 6 + 10         

Os valores existentes na coluna da direita da tabela permitem concluir que os números da sequência inicial podem ser obtidos através de adições de um determinado tipo de números figurados, os números triangulares (1, 3, 6, 10, etc.).

Tendo em conta que o próximo número triangular é o 15, isso significa que o número que dá continuidade à sequência inicial será o resultado de 1 + 3 + 6 + 10 + 15, isto é, o 35.

Tal como no caso dos números triangulares, o triângulo de Pascal também contempla a sequência numérica aqui proposta:

Esta figura permite confirmar que é o 35 o número que dá continuidade à sequência inicial. Além disto, como a seguir ao 35 surge o 56, isto quererá dizer que o 56 é a soma dos seis primeiros números triangulares (1 + 3 + 6 + 10 + 15 + 21), aliás como confirma o padrão stick do triângulo de Pascal.

Note que com uma forma parecida ao stick de hóquei em patins, qualquer adição envolvendo números triangulares consecutivos origina uma soma que é um número que faz parte da nossa sequência inicial:

Em contexto de sala de aula, além das conexões agora estabelecidas envolvendo esta sequência numérica, será desejável que os alunos descubram o nome deste fascinante conjunto numérico.

As imagens seguintes pretendem ajudar nessa designação:

1 4 10

As imagens anteriores evidenciam a configuração de figuras tetraédricas, pelo que esta sequência numérica deve ser designada como sendo a sequência de números tetraédricos.

Tendo em conta a explanação agora feita, a próxima figura tetraédrica corresponde ao valor 20:

Para além do estabelecimento desta conexão numérica e geométrica, também seria desejável que os alunos pudessem associar estes números ao tema das combinações. Aliás, num artigo anterior associei o triângulo de Pascal às combinações, pelo que é fácil perceber como se obtém cada um destes números por essa via:

 

 

De facto, a lei geral que origina os números tetraédricos assenta nas combinações de "n", três a três, com "n" maior ou igual a 3.

Tendo em conta as reflexões que suportam este texto, como proceder para encontrar o valor do décimo número tetraédrico? Quais os números triangulares sucessivos que lhe darão origem?

 

Informação aos meus leitores: Como entramos em período de férias lectivas, apenas retomarei a escrita neste blog na primeira semana de Setembro de 2009. Até lá limitar-me-ei a publicar alguns comentários que entendam enviar-me, ou responder a algumas dúvidas ou sugestões de temas para o blog.

Agradeço a todos a paciência de lerem os meus escritos, produzidos ao longo deste último ano, que representou mais de 61 mil entradas no blog.

Gostaria de agradecer individualmente a todos que o visitam, desde todo o Portugal e passando por Japão, Angola, Moçambique, Polónia, Brasil, México, Espanha, Perú, Bélgica, República Dominicana, Canadá, EUA, entre outros, e, sobretudo, àqueles que me deixam comentários, sugestões, opiniões, etc.

Um grande abraço para todos e até Setembro!

Arrumação de ovos e números triangulares

Abril 13, 2009

Paulo Afonso

Aparentemente a simples tarefa de arrumar ovos na respectiva caixa não tem por trás uma grande preocupação matemática, pois arruma-se se houver espaço e não se arruma se o espaço não existir, isto é, se a caixa já estiver completa.

Numa caixa onde se pode arrumar meia dúzia de ovos permite a opção de se arrumar um único ovo em 6 posições distintas (A, B, C, D, E, F):

 

E no caso de se pretenderem arrumar 3 ovos? Quantas possibilidades existem?

Repare-se que utilizando-se as posições A e duas das outras, existem 10 possibilidades:

 

 

 

 

Contudo, os ovos podem ser arrumados usando-se a posição B e duas das restantes, excepto a posição A. Logo, há mais 6 possibilidades:

 

  

Por sua, vez, se os ovos forrem arrumados na posição C e em duas outras posições, excepto as posições A e B, originam-se mais 3 possibilidades de arrumação:

  

Por fim, usando-se a posição D, a E e a F, ainda surge uma outra possibilidade de se arrumarem os três ovos:

Em síntese, existem 20 possibilidades de arrumar três ovos numa vulgar caixa com capacidade para meia dúzia de ovos. Repare-se na curiosidade matemática de as possibilidades estudadas em função da posição inicial ser a A, a B, a C ou a D estarem associadas à sequência de números triangulares (..., 10, 6, 3, 1).

E se em vez de se pretenderem arrumar 3 ovos, fossem 4? Quantas possibilidades existem? Também têm relação com os números triangulares?

O mundo mágico das conexões matemáticas

Dezembro 28, 2008

Paulo Afonso

Perdoem-me os leitores a falta de modéstia por dedicar este artigo ao meu mais recente livro, acabado de publicar a 17 de Dezembro de 2008 pelas Edições do Instituto Politécnico de Castelo Branco, cujo nome é: O Mundo Mágico das Conexões Matemáticas, com o ISBN: 978-989-8196-06-4.

Apesar de não se tratar de um livro que explicitamente aborde o tema da Matemática Recreativa, contém algumas propostas de tarefas de aplicação da Matemática ao quotidiano, com a respectiva justificação matemática de isso poder ocorrer.

O índice do livro permite ter-se uma ideia dos temas abordados:

1 - Introdução

2 - Conexões matemáticas a partir do Binómio de Newton

3 - Conexão algébrica e geométrica relacionando outros casos notáveis da multiplicação

4 - Conexão entre a diferença de quadrados e o teorema de Pitágoras

5 - Ternos pitagóricos - várias perspectivas conectadas

6 - O triângulo de Pascal e sua conexão com o cálculo combinatório, com os números de Fibonacci e com outros temas matemáticos

7 - Conexão entre o triângulo de Pascal, os números triangulares e os números tetraédricos

8 - Conexão entre os números triangulares e outros números figurados

9 - Outras conexões matemáticas envolvendo os números triangulares

10 - Composição e decomposição de números através da utilização de triângulos mágicos

11 - Composição e decomposição de números através da utilização de quadrados mágicos

12 - As potências e sua conexão a vários temas matemáticos

13 - Conexões finais

14 - Bibliografia 

Eis alguns exemplos de tarefas propostas nesse livro:

 

A: - Imagine-se um terreno quadrado com 30 metros de lado, o qual vai ser dividido em quatro partes. Uma primeira parte será um amplo espaço para uma garagem, cujo chão será um rectângulo com 10 metros de largura e 20 metros de comprimento. Mesmo encostada a esta garagem está uma piscina quadrada com 100 metros quadrados de área. Além disso, mesmo ao lado da piscina fica uma zona ajardinada, de forma rectangular, com exactamente a mesma área que o chão da garagem. O resto do terreno fica para a edificação da casa, cujo chão será um quadrado. Qual é a área deste chão?

 

B: - Sabendo que existem cinco pessoas a pretender jogar matraquilhos, quantas são as combinações possíveis para estarem quatro pessoas a jogar de cada vez?

 

C: - Quantos apertos de mão são dados por 40 amigos que já não se viam há algum tempo e que se juntaram num congresso?

 

Note que o 1º caso está associado ao Binómio de Newton, o 2º caso ao triângulo de Pascal e às combinações e o 3º caso à sequência de números triangulares.

 

Qual a resolução de cada um?

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"