Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Triângulo de Pascal - múltiplas conexões matemáticas

Novembro 05, 2008

Paulo Afonso

O triângulo de Pascal permite o estabelecimento de múltiplas conexões matemáticas, pois interliga-se com vários conceitos desta disciplina. 

No âmbito da recreação matemática, poder-se-ia desafiar os sujeitos a encontrarem regularidades ou particularidades interessantes no seguinte triângulo numérico, designado por triângulo de Pascal:

 

Não pretendendo esgotar o tema, neste artigo vou debruçar-me sobre algumas respostas possíveis para o desafio acima colocado.

Assim, uma primeira observação que se pode fazer é que este triângulo contempla, por duas vezes, a sequência dos números naturais:

 

Por outro lado, também contempla, por duas vezes, a sequência dos números triangulares, isto é, os que podem originar figuras triangulares, como tive oportunidade de abordar nos dois artigos anteriores:

 

Além disto, o triângulo de Pascal também contempla a sequência dos números tetraédricos:

 

Por seu turno, usando o modelo stick de hóquei permite encontrar-se rapidamente uma soma de várias parcelas de números sucessivos de uma mesma linha obliqua do triângulo:

O tema das probabilidades também poderá ser associado a este triângulo. Para tal, tente resolver a seguinte situação problemática: "Ao lançar ao ar uma moeda honesta três vezes, qual a probabilidade de saírem duas caras?"

A tabela seguinte permite sistematizar uma possível resolução, contemplando o caso de não saírem caras, sair apenas uma cara, duas caras ou saírem três caras:

Zero caras Uma cara Duas caras Três caras
ccc

Ccc

cCc

ccC

CCc

CcC

cCC

CCC
1 3 3 1

Em termos de resolução da situação proposta, dos 8 casos possíveis, apenas 3 são favoráveis a saírem duas caras, pelo que a probabilidade de isso  ocorrer é de apenas  0,375.

Note-se que os oito casos possíveis coincidem com os valores existentes na quarta linha do triângulo de Pascal:

Face a esta observação será interessante testar a conjectura de que os valores da linha seguinte do triângulo de Pascal possam representar os casos possíveis de saírem zero caras, uma cara, duas caras, três caras ou quatro caras ao lançar-se uma moeda honesta ao ar quatro vezes.

A tabela e o triângulo seguintes confirmam esta conjectura:

Zero caras Uma cara Duas caras Três caras Quatro caras
cccc

Cccc

cCcc

ccCc

cccC

CCcc

cCCc

ccCC

CcCc

cCcC

CccC

CCCc

CCcC

CcCC

cCCC

CCCC
1 4 6 4 1

O cálculo combinatório pode, igualmente, ser associado a este triângulo aritmético.

Tentemos resolver a seguinte situação: "O João tem um autocolante de cada um dos seguintes clubes de futebol: Sporting (S), Benfica (B), Porto (P) e Académica (A). Quais as possibilidades de os colar, de forma ordenada, no seu cacifo da escola, optando apenas por três deles?"

Esta situação pode ser resolvida através de uma tabela como a seguinte:

ABS ASB SAB SBA BAS BSA
ABP APB PAB PBA BAP BPA
BSP BPS PBS PSB SBP SPB
ASP APS PAS PSA SAP

SPA

A primeira coluna da tabela anterior evidencia que há 4 combinações possíveis, que resultam em 24 arranjos: A (4, 3) = 4! / (4 - 3)! = 24. Note que as 4 combinações de quatro equipas, três a três C (4, 3) = 4! / 3! x (4 - 3)! = 4 podem ser obtidas directamente no triângulo de Pascal, pois cada valor pode ser associado a um determinado tipo de combinação:

Averigúe se é possível associar algum elemento da próxima linha do triângulo de Pascal à seguinte situação problemática: "Sabendo que existem 5 pessoas a pretender jogar matraquilhos, quantas são as combinações possíveis para estarem quatro pessoas a jogar de cada vez?" 

Outro importante exemplo a explorar com este triângulo é a sequência dos números de Fibonacci: 

 

Estando certo de que não esgotei o tema, desafio-o a encontrar outras regularidades ou curiosidades matemáticas afectas a este triângulo.

A título de exemplo poderá explorar as potências de base 2, as potências de base 11, a binomial ou até as capicuas.

Desafio-o, também, a prolongar este triângulo por mais dez linhas, numa folha de cartolina, e estudar os padrões geométricos que resultam ao pintarem-se apenas os múltiplos de 2, ou os múltiplos de 3 ou os de 5.

Se ainda não conhecia este mágico objecto matemático, de nome triângulo de Pascal, ficará, certamente, deliciado com estas variadas e interessantes conexões matemáticas que ele permite estabelecer!

Múltiplas conexões matemáticas envolvendo o número 120

Outubro 29, 2008

Paulo Afonso

Se nos lembrarmos do nosso tempo de escola, recordaremos que se falava em vários tipos de números. Havia os pares, os ímpares, os que eram primos, os primos entre si, os compostos, os perfeitos, os quadrados, os triangulares, os naturais, os inteiros, os relativos, os racionais, os reais, os irracionais, etc., etc. Destes, havia alguns que se distinguiam pela sua importância histórica, como seja o 1, o zero, o pi, ou o de ouro. 

Não obstante isto, tem vindo a descobrir-se coisas fantásticas acerca de outros bem mais "modestos", em termos da sua importância relativa como entes da História da Matemática, como seja o 9, o 1089, o 3037 ou o 142857. Basta uma consulta rápida na Internet para nos apercebermos das suas magníficas propriedades matemáticas.

Contudo, não é acerca destes números que eu vou incidir a minha reflexão. Decidi escolher um que, porventura, tem merecido menos elogios, mas que me agrada imenso, por permitir um leque variado de conexões a alguns conceitos matemáticos. Refiro-me ao 120.

Pois é, se eu o desafiasse a reflectir acerca da importância deste valor nas nossas vidas, facilmente o associaríamos a aspectos do tempo (sistema sexagesimal), ou ao limite de velocidade nas auto-estradas. Quantos de nós não pagaram já coimas de 120 euros por excesso de velocidade?

Já relativamente a outros conceitos matemáticos podemos associá-lo, por exemplo, ao conceito de amplitude de ângulos, designadamente aos ângulos externos de um qualquer triângulo equilátero.

Mas vejamos as seguintes propriedades mágicas deste número.

(a) Tem o privilégio de ser formado pelos três primeiros números inteiros (0, 1 e 2).

(b) Como qualquer outro número inteiro, pode ser obtido pela adição de alguns números da sequência de Finonacci (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...). Eis alguns exemplos:

2 + 8 + 21 + 89 = 120

2 + 3 + 5 + 21 + 34 + 55 = 120

2 + 3 + 5 + 8 + 13 + 89 = 120

(c) Como se trata de um número que não é primo, pois é composto, pode ser obtido através da multiplicação de vários factores primos: 120 = 23 x 3 x 5.

(d) Também pode ser obtido através da adição de oito dos dez primeiros números primos: 120 = 3 + 5 + 11 + 13 + 17 + 19 + 23 + 29. Aliás, tendo em conta a conjectura de Goldbach, que diz que qualquer número par maior ou igual a quatro pode ser obtido pela adição de dois números primos, o 120 resultaria da adição de 103 com 17, ou de 113 com 7 ou de 117 com 3.

(e) É um número triangular, o que significa que existem dois números inteiros consecutivos que multiplicados entre si originam um produto que é o dobro desse valor 120. Refiro-me aos números 15 e 16, pois 15 x 16 = 240. De facto, o 120 é o 15º número triangular, pois 120 = [n x [n + 1)] : 2, quando n = 15.

(f) Ao adicionarmos os seus dígitos constatamos que a soma é 3, logo o 120 é divisível por 3. Este facto permite que nos questionemos acerca de quais serão os nove números inteiros consecutivos que permitem transformar a figura seguinte num quadrado mágico, de ordem três, com soma mágica 120?

Eis uma possível solução, envolvendo os seguintes números consecutivos 36, 37, 38, 39, 40, 41, 42, 43, 44:

(g) Será que também pode ser afecto a um quadrado mágico de ordem quatro, isto é, será que existem dezasseis números inteiros consecutivos que permitem tornar a figura seguinte num quadrado mágico de soma 120?

Através dos três exemplos seguintes podemos perceber que existe uma regularidade neste tipo de figuras: 

Quando a sequência se inicia pelo valor 1, a soma é 34; quando se inicia pelo valor 2, a soma é 38; quando se inicia pelo valor 3, a soma é 42. Prolongando este padrão, resulta o seguinte:

Início Soma Início Soma Início Soma Início Soma
1 34 2 38 3 42 4 46
5 50 6 54 7 58 8 62
9 66 10 70 11 74 12 78
13 82 14 86 15 90 16 94
17 98 18 102 19 106 20 110
21 114 22 118 23 122    

O padrão anterior permite concluir que não é possível obter-se um quadrado mágico, de ordem 4, envolvendo dezasseis números inteiros consecutivos cuja soma seja 120. O máximo que se obtém por defeito é 118 e o mínimo que se obtém por excesso é 122.

Ora se formalizarmos este padrão, percebemos que:

1 --- 34 = 34 + 0 x 4

2 --- 38 = 34 + 1 x 4

3 --- 42 = 34 + 2 x 4

4 --- 46 = 34 + 3 x 4

5 --- 50 = 34 + 4 x 4

...

n        = 34 + (n - 1) x 4

Se igualarmos este lei de formação ao valor 120, concluímos que "n" terá que ser 22,5, que será o início da seguinte sequência numérica: 22,5; 23,5; 24,5; 25,5; 26,5; 27,5; 28,5; 29,5; 30,5; 31,5; 32,5; 33,5; 34,5; 35,5; 36,5; 37,5.

Façamos o quadro:

 

Confirma-se, pois, que se pode construir um quadrado mágico, de ordem 4, cuja soma mágica 120 resulta da utilização dos dezasseis números decimais acima enunciados.

(h) A terminar, seria interessante investigar se o 120 resulta ou não da adição de quatro potências de base dois consecutivas.

A tabela seguinte evidencia esse possível estudo:

Note-se, pois, que as potências envolvidas são 23, 24, 25 e 26.

Através de uma exploração algébrica, a resolução da equação seguinte: x2 + 2x2 + 4x2 + 8x2 = 120 dar-nos-ia a resposta "8" como sendo a primeira das potências a considerar.

Faça um estudo semelhante para o caso de quatro potências consecutivas de base 3 e verá que ficará surpreendido!

A beleza matemática dos números triangulares

Outubro 23, 2008

Paulo Afonso

Num dos artigos anteriores tive a oportunidade de me pronunciar acerca de um determinado tipo de números que tinham a particularidade de originar figuras triangulares. Referia-me, na altura, aos números triangulares, cujos seis primeiros termos da sequência são os seguintes: 1, 3, 6, 10, 15, 21...

De entre várias conexões matemáticas que este tipo de números permite estabelecer*, como seja aos números quadrados ou ao triângulo de Pascal, irei associá-los ao conceito de média aritmética, ao conceito de número primo e ao conceito de potência de expoente natural.

* - Afonso, P. (2006). A Magia Conexões Matemáticas - Um caso envolvendo números triangulares. Educação e Matemática, 90, Novembro/Dezembro, 35-38.

Sendo assim, imagine que era desafiado a dividir aqueles seis primeiros elementos da sequência de números triangulares em dois grupos de igual valor numérico e em que cada um dos dois grupos era formado por metade desses elementos.

A figura seguinte permite auxiliar a visualização desta proposta, pois sugere-se que as parcelas de cada um dos grupos sejam colocadas nos triângulos azuis, e as respectivas somas ao centro de cada hexágono amarelo:

Como actividade de recreação matemática, esta situação poderia ser resolvida por tentativas:

Obviamente que em termos de sala de aula de matemática seria desejável que os alunos adicionassem esses seis termos da sequência, cujo valor é 56 e dividissem por dois para encontrarem o valor de cada metade, que é 28.

Ora, baseando-nos neste tipo de imagem, verifica-se que mantendo-se a média no valor 28, estes seis números triangulares permitem a constituição de outros pares de somas, em que cada uma delas continua a resultar da adição de três parcelas:

Note-se que as somas envolvidas nestas figuras são sempre pares.

Será que os restantes valores pares, agrupados segundo os seguintes pares ordenados [(22, 34); (20, 36); (18, 38); (16, 40); (14, 42); (12, 44); (10, 46); (8, 48); (6, 50)] permitem também casos de sucesso em figuras semelhantes às que acabo de mostrar? Será, certamente, uma investigação interessante a fazer-se...

O mesmo será dizer-se relativamente aos pares de números envolvendo somas ímpares, mas mantendo-se a mesma média de 28 valores. Use a figura seguinte para fazer este novo estudo:

Note-se a curiosidade de para o par de somas (19, 37) se conseguirem obter dois casos de sucesso:

É, pois, desafiador fazer-se o estudo para os restantes pares de somas ímpares e de média 28, usando-se apenas figuras semelhantes às anteriores, isto é, que envolvam três parcelas para cada soma.

Como tenho feito em outros artigos, este tema também permite múltiplas extensões.

Veja o exemplo de se sentir desafiado a dividir estes seis números triangulares em dois novos grupos, formado cada um por três elementos, de modo que uma soma seja o triplo da outra...

Uma vez mais, eis um possível caso de sucesso, envolvendo as somas 42 e 14:

Divida agora esses seis números, de modo a formar dois grupos cujas somas são dois números primos.

Se investigar este caso, provavelmente irá concluir que o número de termos envolvido em cada soma não será igual, o que obrigará a recorrer a outro tipo de figuras. Eis uma solução possível:

Conclui-se, pois, que este conjunto de números revela ter grandes possibilidades de exploração pedagógica.

Termino com o seguinte desafio: usar uma figura semelhante à anterior para se obterem duas somas em que uma é o quadrado da outra. 

Conexões matemáticas envolvendo polígonos regulares e as suas diagonais

Outubro 10, 2008

Paulo Afonso

A Geometria e a Medida são duas áreas afins da Matemática, de onde têm sido produzidas muitas actividades de recreação matemática. O exemplo que escolhi para abordar o tema das conexões matemáticas, envolvendo a Geometria e a Medida, tem a ver com o conceito de polígono regular e com o conceito de diagonal de um polígono regular, cujas definições são do domínio comum.

Imagine que era desafiado a identificar o número de segmentos de recta que unem dois vértices não consecutivos em cada uma das seguintes figuras geométricas 

Facilmente se apercebia que no caso do triângulo não existe nenhum segmento de recta deste tipo, no caso do quadrado existem 2, no caso do pentágono existem 5, no caso do hexágono existem 9 e no caso do heptágono existem 14: 

Sem desenhar a respectiva figura seria interessante que se conseguisse descobrir o número de segmentos de recta deste tipo para o caso de se tratar de um polígono regular de doze lados, isto é, um dodecágono.

Seria desejável que os resolvedores tentassem olhar para o número de segmentos de recta deste tipo em cada figura, no sentido de perceberem se existe ou não algum tipo de regularidade.

Ora, constata-se que o número se segmentos de recta para cada caso é, respectivamente, o seguinte: 0, 2, 5, 9, 14. Se se reparar, de 0 para 2 há um incremento de duas unidades; de 2 para 5 o incremento é de três unidades; de 5 para 9 é de quatro e de 9 para 14 é de cinco. Seguindo-se este critério, facilmente se conclui que para o caso do dodecágono existem 54 segmentos de recta deste tipo.

Se esta situação for transportada para o contexto de sala de aula, seria interessante que os alunos pudessem pensar numa lei geral que relacionasse o número deste tipo de segmentos de recta  - diagonais dos polígonos - com o número de lados de cada polígono.

A tabela seguinte sistematiza os dados: 

  Polígono    

Nº de Lados (l)

Nº de Diagonais (d)

Triângulo

3

0

Quadrado

4

2

Pentágono

5

5

Hexágono

6

9

Heptágono

7

14

Octógono

8

20

Eneágono

9

 27

Decágono

10

 35

Undeágono

11

 44

Dodecágono

12

 54

Analisando-se ambas as colunas que contêm valores numéricos, deduz-se a lei geral de obtenção do número de diagonais de um polígono regular a partir do número de lados desse polígono: d = l x (l - 3) : 2, sendo "d" o número de diagonais de um polígono regular e "l" o número de lados desse polígono.

Neste caso qualquer pergunta que vise a obtenção do número de diagonais de um determinado polígono regular, facilmente será resolvida pela aplicação directa da fórmula anterior.

Sendo assim, qual o número de diagonais do icoságono, isto é, do polígono regular formado por 20 lados?

Tal como temos vindo a fazer em artigos anteriores, este tema também pode suscitar algumas extensões e conexões a outros assuntos matemáticos, como seja o dos números triangulares.

Repare na soma do número de lados de cada polígono, supra analisado, e o respectivo número de diagonais:

Polígono    

Nº de Lados (l)

Nº de Diagonais (d)

l + d

Triângulo

3

0

3

Quadrado

4

2

6

Pentágono

5

5

10

Hexágono

6

9

15

Heptágono

7

14

21

Octógono

8

20

28

Eneágono

9

 27

36

Decágono

10

 35

45

Undeágono

11

 44

55

Dodecágono

12

 54

66

Os números 3, 6, 10, 15, 21, 28, 36, 45, 55, ..., por permitirem a obtenção de figuras triangulares, designam-se de números triangulares:

           3              

6

10

A fórmula que gera este tipo de números pode ser deduzida a partir da lei geral que gera o número de diagonais de um polígono regular em função do seu número de lados e é a seguinte tn =  n x (n + 1) : 2, sendo "t" um número triangular e "n" a ordem desse número triangular na respectiva sequência de números triangulares. Como primeiro número triangular há que se considerar o 1, pois t1 = 1 x 2 : 2 = 1.

Esta conexão matemática permite que se desafiem os alunos com várias tarefas interessantes, às quais dedicarei um próximo artigo.

Para já desafio-os a responder à seguinte tarefa: Qual o polígono regular cuja soma do número de lados com o número das suas diagonais origina o 15º número triangular?

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"