Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Dos pares ordenados ao pensamento algébrico

Setembro 01, 2012

Paulo Afonso

No início de mais uma ano letivo renovo os votos de boas aprendizagens matemáticas, sobretudo alicerçadas em bons ambientes de investigação e desafio da inteligência humana.

 

Para iniciar mais um ano de publicações regulares, resultantes de algumas reflexões que continuarei a fazer em torno de conceitos matemáticos, apresento algumas conexões matemáticas a partir de alguns pares ordenados.

 

Vejamos o exemplo seguinte: {(0, 15); (2, 12); (4, 9); (6, 6); (8, 3); (10, 0)}. Que comentários poderemos fazer relativamente a este conjunto numérico?

 

- O 1º termo de cada par ordenado é um múltiplo de dois, resultante da fórmula "2n", sendo "n" um número inteiro, iniciado no 0 e terminando no 5.

 

- O 2º termo de cada par ordenado é um múltiplo de três, resultante da fórmula "3n", sendo "n" um número inteiro, iniciado no 5 e terminando no 0.

 

-  A soma de cada par ordenado obedece a uma regularidade: 15, 14, 13, 12, 11, 10.

 

- A diferença de cada par ordenado também obedece a uma regularidade: 15, 10, 5, 0, -5, -10.

 

- O produto de cada par ordenado também obedece a uma regularidade: 0, 24, 36, 36, 24, 0.

 

- A sua disposição num referencial cartesiano coloca-os segundo uma regularidade posicional:

 

 

- E essa regularidade pode ser definida por uma reta:

 

 

Qual será a função que descreve essa reta?

 

Seria interessante que em contexto de sala de aula de Matemática os alunos pudessem investigar e propor uma explicação matemática para justificar que estes cinco pares ordenados de números se relacionam entre si, como atesta a reta que os une. De entre várias tentativas seria desejável que alguém propusesse adicionar o triplo do 1º termo do par ordenado ao dobro do respetivo 2º termo.

 

Vejamos:

 

(0, 15) ----- 3 x 0 + 2 x 15 = 30

(2, 12) ----- 3 x 2 + 2 x 12 = 30

(4, 9) ----- 3 x 4 + 2 x 9 = 30

(6, 6) ----- 3 x 6 + 2 x 6 = 30

(8, 3) ----- 3 x 8 + 2 x 3 = 30

(10, 0) ----- 3 x 10 + 2 x 0 = 30

 

Logo, poder-se-ia concluir que os pares ordenados analisados obedecem à seguinte função matemática 3x + 2y = 30.

 

E se algum aluno sugerisse, por exemplo, adicionar o dobro do 1º termo de cada par ordenado com o triplo do respetivo 2º membro do par? Descobriria algo de matematicamente interessante?

 

Vejamos:

 

(0, 15) ----- 2 x 0 + 3 x 15 = 45

(2, 12) ----- 2 X 2 + 3 X 12 = 40

(4, 9) ----- 2 X 4 + 3 X 9 = 35

(6, 6) ---- 2 X 6 + 3 X 6 = 30

(8, 3) ----- 2 X 8 + 3 X 3 = 25

(10, 0) ----- 2 x 10 + 3 x 0 = 20

 

Curioso, de facto! Os resultados obtidos obedecem, também eles, a uma nova regularidade: 45, 40, 35, 30, 25, 20, decrescendo de 5 em 5, iniciando no 45 e terminando no 20.

 

Voltando à função 3x + 2y = 30, faça-se um estudo semelhante para as seguintes novas funções: 3x + 2y = 40 e 3x + 2y = 50. Quais são os pares ordenados que funcionam para cada caso? Há algum tipo de regularidade entre eles?

À procura de regularidades

Junho 23, 2012

Paulo Afonso

Tem sido hábito neste blog eu suscitar a reflexão relativamente às múltiplas maneiras como os números se podem relacionar entre si. Muitas vezes essas relações são explícitas e evidentes, outras carecem de alguma investigação, suportada inicialmente apenas por intuição, intuição essa que acaba por gerar descoberta ou confirmação de relações matemáticas aparentemente inexistentes.

 

O exemplo que trago para ajudar a confirmar este segundo tipo de relações numéricas assenta na seguinte figura, constituídas pelos primeiros oito números naturais consecutivos:

 

 

O objetivo é investigar se existe algum tipo de regularidade se se considerar, de cada vez, a soma de quatros desses números, de acordo com o esquema de análise seguinte:

 

  
   
  

  

 Vejamos cada caso: 

 

1 + 2 + 3 + 4 = 10

 

4 + 5 + 6 + 7 = 22

 

7 + 8 + 1 + 2 = 18

 

 

2 + 3 + 4 + 5 = 14

 

 

5 + 6 + 7 + 8 = 26

 

 

8 + 1 + 2 + 3 = 14

 

  3 + 4 + 5 + 6 = 18

 

  6 + 7 + 8 + 1 = 22

 

 

1 + 2 + 3 + 4 = 10

 

  

 

Curiosamente, se colocarmos as várias somas obtidas em linha, verificamos que existe uma regularidade numérica, pois o que acontece antes do valor central, volta a ocorrer a seguir a ele, num processo simétrico:

 

10     22     18     14     26     14     18     22     10

 

Se se substituírem os valores iniciais pelos seus respetivos dobros, o que é previsível que aconteça? Consegue antever a menor e a maior das somas?

 

Analisem-se, então, as várias figuras se a inicial for a seguinte:

 

 

As novas somas associadas às nove figuras respetivas são as seguintes: 

 

2 + 4 + 6 + 8 = 20

 

8 + 10 + 12 + 14 = 44

 

 

14 + 16 + 2 + 4 = 36

 

 

 

4 + 6 + 8 + 10 = 28

 

 

10 + 12 + 14 + 16 = 52

 

 

16 + 2 + 4 + 6 = 28

 

 

6 + 8 + 10 + 12 = 36

 

 

12 + 14 + 16 + 2 = 44

 

 

2 + 4 + 6 + 8 = 20

 

 

Tal como, provavelmente, seria de prever, os valores de cada soma duplicam os respetivos valores de cada soma da tarefa anterior:

 

20     44     36     28     52     28     36     44     20  

 

Uma vez mais, constata-se a existência de uma regularidade de cariz simétrica, tendo em conta o valor central.

 

Note-se que estivemos a fazer com estudo envolvendo os primeiros oito números pares. O que ocorrerá se se comparar este estudo com um outro, envolvendo os primeiros oito números ímpares?

 

A figura inicial será a seguinte:

 

 

Consegue antecipar resultados? Com que fundamentação o faz?

Números oblongos e investigações matemáticas

Janeiro 01, 2012

Paulo Afonso

Utilizar várias sequências numéricas para que se lhes dê continuidade tem sido apanágio deste blog. Desta vez, apesar de ter escolhido um conjunto de números cuja relação matemática é facilmente identificável, permite um leque alargado de investigações matemáticas que ajudam a ilustrar a dimensão apaixonante desta Ciência.

 

Eis os números a que se deve dar continuidade:    

2     6     12     20     ____     ____

 

Como disse, facilmente nos poderemos aperceber das seguintes relações:

 

2 + 4 = 6

6 + 6 = 12

12 + 8 = 20

 

Dando-se continuidade a este tipo de relação numérica, facilmente se poderá prever o 30 como sendo o próximo número da sequência, por resultar de 20 + 10. De facto, 10 é o próximo número par a seguir ao 8.

 

Logo, o próximo elemento seria o 42, pois 42 = 30 + 12, sendo o 12 o valor par a acrescentar ao elemento da sequência anterior.

 

Ora, em contexto de sala de aula seria interessante que os alunos pudessem ser solicitados a investigar se haveria alguma lei matemática que explicasse este tipo de incrementos entre os elementos da sequência numérica.

 

Este desafio poderá suscitar várias investigações por parte dos resolvedores.

 

Uma primeira aproximação poderia passar pela identificação da relação existente entre o primeiro elemento da sequência e cada um dos restantes. Vejamos:

 

Ordem do termo na sequência Valor do termo Relação com o 1º termo
2  
6 2 + 1 x 4
12 2 + 2 x 5
20 2 + 3 x 6
30 2 + 4 x 7
42 2 + 5 x 8

  

Analisando-se os valores da coluna da direita, também se pode referir para o 1º caso que 2 = 2 + 0 x 3, pois ajuda a complementar esta forma recursiva de analisar os valores aí presentes.

 

Assim sendo, facilmente se percebe que a lei geral de obtenção de qualquer número (t) desta sequência pode ser a seguinte: t = 2 + (n - 1) x (n + 2), sendo "n" a ordem do termo na sequência. Logo, o 7º termo seria o seguinte: t7 = 2 + (7 - 1) x (7 + 2) = 2 + 6 x 9 = 56.

 

Por outro lado, confirma-se que utilizando o próximo valor, par, a seguir ao 12, isto é, o 14, obtém-se o valor 56. De facto, 42 + 14 = 56.

 

Esta é apenas uma das investigações que esta tarefa permite. Outra passa por se associar cada um dos elementos da sequência numérica a um produto de fatores consecutivos:

 

2 = 1 x 2

6 = 2 x 3

12 = 3 x 4

20 = 4 x 5

 

Logo, poderá haver uma outra lei capaz de gerar este conjunto de números. De facto, cada termo da sequência (t) resulta do produto do valor desse termo com o seu sucessor, isto é t = n x (n + 1). Trata-se da fórmula geradora de um tipo de números figurados, que são os números oblongos, pois cada valor pode estar associado a uma figira geométrica retangular cujas medidas são "x" e "x + 1".

 

Logo, confirma-se o valor 56, como sendo o 7º termo desta sequência, pois t7 = 7 x (7 + 1) = 7 x 8 = 56. 

 

Um outro desafio interessante que se pode lançar a propósito desta sequência de números é o seguinte: Obter o valor 2 usando apenas três 2, obter o valor 6 usando apenas três 3, obter o valor 12 usando apenas três 4 e obter o valor 20 usando apenas três 5.

 

Uma possível hipótese de resposta poderá ser a seguinte:

 

2 = 2 x 2 - 2

6 = 3 x 3 - 3

12 = 4 x 4 - 4

20 = 5 x 5 - 5

 

Logo, uma outra lei geral que pode originar qualquer um destes números (t) é a seguinte: t = (n + 1) x (n + 1) - (n + 1). Uma vez mais, confirmemos o 7º termo usando, agora, esta nova lei geral. t7 = (7 + 1) x (7 + 1) - (7 + 1) = 8 x 8 - 8 = 56.

 

Eis uma outra extensão deste desafio inicial: Obter o valor 2 usando apenas três 1, obter o valor 6 usando apenas três 2, obter o valor 12 usando apenas três 3 e obter o valor 20 usando apenas três 4. Qual a nova lei geral que surge a partir deste novo desafio? 

Sequências numéricas contendo dízimas infinitas periódicas

Outubro 15, 2011

Paulo Afonso

Em Matemática ouvimos muitas vezes falar em dízimas infinitas periódicas e a minha reflexão visa conectar este tipo de números ao tema das regularidades e padrões numéricos.

 

Vejamos, qual será o número a dar continuidade a esta sequência numérica:

 

5;     6,(6);     10;     16;     26,(6);     ______;

 

Aparentemente esta tarefa não é de fácil resolução ou de resolução imediata, pois não surge evidente a lei de crescimento desta sequência numérica. Contudo, a existência de duas dízimas infinitas periódicas neste conjunto de cinco números poderá servir de chave para a resolução deste desafio.

 

Assim sendo, a minha sugestão vai no sentido de se converter cada dízima na respetiva fração. Recordemos o procedimento matemático para que isso possa ocorrer. Como o período de ambas as dízimas ocorre logo ao nível das décimas, podemos seguir os seguintes cálculos:

 

x = 6,(6) <=> 10x = 66,(6)

 

10x - x = 66,(6) - 6,(6) <=>

<=> 9x = 60 <=>

<=> x = 60/9 <=>

<=> x = 20/3

 x = 26,(6) <=> 10x = 266,(6)

 

10x - x = 266,(6) - 26,(6) <=>

<=> 9x = 240 <=>

<=> x = 240/9 <=>

<=> x = 80/3

 

Será que a identificação das respetivas frações ajuda a interpretar a sequência numérica?:

 

5;     20/3;     10;     16;     80/3;     ______;

 

Em contexto de sala de aula é bem possível que um dos vários alunos possa avançar com a proposta de que a fração 80/3 é equivalente à fração 160/6. Se esta sugestão não ocorrer, pode ser indicada pelo professor, no sentido de que os resolvedores não desanimem e, consequentemente, desistam.

 

No fundo, o que se pretende é olhar para a sequência numérica neste novo formato:

   

5;     20/3;     10;     16;     160/6;     ______;

 

Ajuda?

 

Talvez, pois poderá haver alguém que sugira a conversão de todos os números inteiros para as respetivas frações. Eis uma aproximação interessante:

 

 

10/2;     20/3;     40/4;     80/5;     160/6;     ______;

 

Logicamente que quando esta conversão for feita, o desafio colocado ficará imediatamente resolvido, pois facilmente se percebe que estamos perante números fracionários cujos denominadores são os números naturais, iniciados no 2, e os respectivos numeradores são dobros sucessivos de cinco (10 = 2 x 5; 20 = 2 x 2 x 5; 40 = 2 x 2 x 2 x 5; 80 = 2 x 2 x 2 x 2 x 5; 160 = 2 x 2 x 2 x 2 x 2 x 5). Logo, poder-se-á concluir que os numeradores dessas frações resultam do produto das potências de base dois, de expoente natural, com o cinco (10 = 21 x 5; 20 = 22 x 5; 40 = 23 x 5; 80 = 24 x 5; 160 = 25 x 5).

 

Neste momento é fácil avançar com o número que dá continuidade à sequência numérica, pois o numerador será 26 x 5, isto é, o valor 320, e o denominador será o valor 7:

 

 

10/2;     20/3;     40/4;     80/5;     160/6;     320/7;

 

Note-se que este 6º termo da sequência volta a ser uma dízima infinita periódica cujo período é o seguinte: 714285. A dízima é, pois, a seguinte: 45,(714285).

 

Ora, os numeradores destas frações podem ser conectados a uma outra disposição numérica, baseada no conceito de Triângulo de Pascal, em que o valor inicial e os que iniciam e terminam cada linha deixam de ser uns para serem cincos:

 

 

Que tipo de conexão matemática é, pois, possível fazer-se entre os numeradores das frações da sequência numérica e esta figura?

 

Uma vez que referimos as potências de base dois, de expoente natural,  a multiplicar com o fator 5, termos de efetuar as somas dos valores existentes em cada linha horizontal da figura:

 

 

Fica, pois, confirmada esta possibilidade de conectar matematicamente a sequência numérica inicial com esta figura numérica.

 

Mas as conexões matemáticas não se ficam por aqui. Voltemos ao 6º termo da sequência numérica: 45,(714285). Centremo-nos no seu período: 714285 e dividamo-lo por 5. Obteremos o valor 142857.

 

Comparem-se os dígitos existentes neste quociente com os dígitos do dividendo. O que poderemos concluir?

 

Curioso, não é? Os dígitos são, de facto, os mesmos, apesar de estarem posicionados de forma diferente!

 

Multiplique, agora, este quociente obtido por 3, por 4 e por 6. O que pode concluir?

Pentágonos em relação algébrica

Março 19, 2011

Paulo Afonso

Conectar figuras geométricas a actividades que promovam o pensamento algébrico pode servir de contexto para se estabelecerem relações entre a Matemática Recreativa e a Matemática dita mais formal. O exemplo que trago para se reflectir sobre este tema baseia-se em pentágonos não regulares.

 

Uma primeira tarefa passa por se compararem as seguintes figuras, no sentido de se identificarem aspectos comuns a ambas:

 

Uma primeira apreciação não pode deixar de salientar o tipo de figuras que está em causa. Trata-se de dois pentágonos irregulares. Além disto, poder-se-á descrever a forma como cada figura é constituída. A este nível poder-se-á referir o seguinte:

 

a) o lado de cima a figura da esquerda tem dois elementos e o da direita tem mais um;

b) nos lados adjacentes ao lado acabado de analisar, em ambas as figuras contabilizam-se três elementos em cada um destes lados;

c) nos dois restantes lados de cada figura constata-se que os da figura da esquerda têm quatro elementos e os da figura da direita têm mais um elemento cada.

 

Em termos de número de elementos que compõem cada figura, a da esquerda é formada por uma fronteira composta por 11 elementos e com um interior formado por 4 elementos. Isto perfaz um total de 15 elementos. Já a figura da direita possui uma fronteira com 14 elementos e um interior com 8 elementos. No total há, pois, 22 elementos.

 

Face a esta análise, será possível prever a constituição da próxima figura, que dê continuidade a estas duas? Como será ela formada?

 

O que poderá ser legítimo que se diga em relação à próxima figura é que o lado de topo terá 4 elementos, pois será sempre mais um do que o mesmo lado da figura anterior. Relativamente aos dois lados que se unem a este, ambos voltarão a ser formados por três elementos cada, à semelhança das duas figuras já analisadas. Por último, os restantes dois lados da nova figura serão formados por 6 elementos cada um, pois terão de ter mais um elemento do que os respectivos lados da figura anterior.

 

Relativamente à composição da fronteira e do interior da nova figura, será um pouco mais difícil de prever, pois só temos dois exemplos analisados, o que pode ser manifestamente pouco para que se proponha, de imediato, uma boa conjectura. Contudo, penso que seria desejável que, em contexto de sala de aula, os alunos avançassem com um raciocínio do seguinte tipo: "ora se da fronteira da primeira figura se passou de 11 elementos para 14 da segunda, então se calhar continuará a haver um aumento de 3 unidades, o que leva a que a próxima figura tenha 17 elementos na fronteira". Relativamente ao interior, e fazendo-se um raciocínio semelhante ao acabado de expor, "haverá 12 elementos, porque aumentará o seu número em 4 unidades relativamente ao interior da figura anterior. Se assim for, a nova figura terá um total de 29 elementos".

 

Vejamos a figura no sentido de se testarem todas estas previsões:

 

Relativamente à figura anterior, confirma-se que:

a) o lado de topo é formado por 4 elementos;

b) cada lado unido a este é formado por 3 elementos;

c) cada um dos restantes dois lados do pentágono é formado por 6 elementos.

 

Analisemos, agora a composição da fronteira e do interior da figura:

a) fronteira formada por 17 elementos;

b) interior formado por 13 elementos;

c) a figura possui um total de 30 elementos.

 

Conclusão:

- das seis conjecturas formuladas, não se confirmam apenas duas; o número de elementos do interior da figura e o respectivo número total de elementos. De facto não são 12 os elementos do seu interior, mas, sim, 13; perfazendo um total de 30 elementos e não de 29 como previsto.

 

Um desafio interessante a fazer-se agora seria o de se tentar perceber a lei de crescimento e formação deste tipo de figuras, tendo em conta apenas o número de elementos existentes no lado de topo. Vejamos a tabela:

 

Nº de elementos no lado de topoNº de elementos da fronteiraNº de elementos do interiorNº total de elementos da figura

2

3

4

11

14

17

4

8

13

 

15

22

30

 

 

Se a nossa atenção incidir nas colunas inicial e final, podemos concluir que quando a figura tem 2 elementos no lado do topo, o número total de elementos da figura é 15; por sua vez, quando o número de elementos do topo é 3, o total de elementos da figura é 22, isto é, 15 + 7; por último, quando o número de elementos do top é 4, o total de elementos da figura é 30, isto é, 15 + 7 + 8.

 

Relativamente à análise dos valores da coluna dos elementos da fronteira, podemos lê-los da seguinte forma: 11; 11 + 1 x 3; 11 + 2 x 3.

 

Por sua vez, os valores da coluna dos elementos do interior podem ter a seguinte leitura: 4; 4 + 4; 4 + 4 + 5.

 

Tendo em conta estas relações numéricas será fácil descobrir os valores para as duas próximas figuras que dêem continuidade a estas três acabadas de analisar?

 

 

Nº de elementos no lado de topoNº de elementos da fronteiraNº de elementos do interiorNº total de elementos da figura

2

3

4

5

6

11

14 = 11 + 1 x 3

17 = 11 + 2 x 3

20 = 11 + 3 x 3

23 = 11 + 4 x 3

4

8 = 4 + 4

13 = 4 + 4 + 5

19 = 4 + 4 + 5 + 6

26 = 4 + 4 + 5 + 6 + 7

 

15

22 = 15 + 7

30 = 15 + 7 + 8

39 = 15 + 7 + 8 + 9

49 = 15 + 7 + 8 + 9 + 10

  

A título de exemplo, confirmemos os valores avançados para a figura que tem 6 elementos no lado de topo:

 

Esta figura tem, de facto, 23 elementos na fronteira e 26 elementos no interior, perfazendo um total de 49 elementos. Contudo, falta inferir uma lei geral que descreva o "comportamento" matemático deste tipo de figuras. Para tal centremos agora a nossa atenção no total de elementos que compõe cada figura: 15, 22, 30, 39, 49. Haverá algo de semelhante neste conjunto de valores?

 

Vejamos:

 

15 = 16 -1 = 42 - 1

22 = 25 - 3 = 52 - 3

30 = 36 - 6 = 62 - 6

39 = 49 - 10 = 72 - 10

49 = 64 - 15 = 82 - 15

 

Analisando-se os valores acima, conclui-se que o total de elementos de cada figura não é mais do que a diferença entre um número quadrado (42, 52, 62, 72, 82, ...) e um número triangular (1, 3, 6, 10, 15, ...).

 

Tendo em conta esta conclusão, importa operacioná-la no sentido de se conseguir obter o total de elementos (t) de cada figura a partir do respectivo número de elementos (e) do lado do topo. Recordando que a lei geral da sequência dos números quadrados é "n2" e que a lei geral da sequência dos números triangulares é "(n2 + n) : 2", então para o caso destas figuras, a lei geral é a seguinte:

t = (e + 2)2 - [(e2 - e) : 2], porque temos de ter em consideração que o menor valor de "e" tem de ser o 2.

 

A título de exemplo, testemos esta lei para o caso de uma figura com 6 elementos no lado do topo, isto é, "e = 6", então:

 

t = (6 + 2)2 - [(62 - 6) : 2] = 82 - [(36 - 6) : 2] = 64 - 15 = 49.

 

E se as figuras em análise fossem as seguintes:

 

 

Haverá semelhanças entre elas? Quais? Caracterize o que se passa ao nível dos elementos da fronteira e ao nível dos elementos do interior. Haverá uma lei geral que explica a relação eventualmente existente entre estas figuras?

Cubos mágicos

Dezembro 01, 2010

Paulo Afonso

Sendo o tema das figuras mágicas muito apropriado para o desenvolvimento de actividades de recreação matemática, desta vez vou incidir a minha reflexão não em figuras planas mas, sim, numa tridimensional - o cubo. Sobre este sólido geométrico muitas considerações de natureza matemática e histórica poderiam ser feitas. Desde logo por ser um importante sólido platónico, mas também por possibilitar um estudo de natureza investigativa muito interessante acerca das suas possíveis planificações. De facto, investigar quantos são os hexaminós susceptíveis de originar um cubo é uma tarefa que deve ser implementada não só em termos de recreação matemática, mas também num contexto de matemática mais formal e em sala de aula.

  

Centremo-nos, então, no cubo como podendo ser uma figura sólida mágica. O desafio a desenvolver é o seguinte. Colocar, todos e apenas uma vez, os oito primeiros números naturais nos vértices do cubo, por forma a que a soma dos quatro números existentes em cada face seja sempre a mesma.

  

Uma possível solução é a seguinte:

 

 

 

Note-se que em cada uma das seis faces do cubo, a soma dos números aí existentes é sempre 18:

 

a - 6 + 3 + 8 + 1 = 18

b - 1 + 8 + 2 + 7 = 18

c - 2 + 7 + 4 + 5 = 18

d - 4 + 5 + 3 + 6 = 18

 

Esta tarefa, podendo ser resolvida através da estratégia da tentativa e erro, deveria ser utilizada em contexto de sala de aula para o desenvolvimento do sentido do número e como exemplo ilustrativo de como a matemática permite muitas conexões entre a componente geométrica e a a numérica.

 

Seria muito interessante que os resolvedores se apercebessem que o total dos oito números envolvidos nesta tarefa originam uma soma 36:

 

 

Logo, trata-se de um valor que deve ser dividido em duas partes iguais, uma vez que as duas faces opostas terão de originar a mesma soma numérica. Estamos a falar do valor 18. Por sua vez, este valor terá de ser obtido pela adição de quatro parcelas diferentes. Contudo, como cada par de números assentes em dois vértices adjacentes faz parte, ao mesmo tempo, de duas faces adjacentes, implica que a sua soma seja 9. Ora este conjunto de oito números permite que isso aconteça:

 

 

Assim, sendo, a estratégia de tentativa e erro deverá ser substituída por este tipo de raciocínio mais estruturado. Note-se que duas das quatro arestas de cada face do cubo anterior contêm um par de números cuja soma é sempre 9.

 

O desafio seguinte é fazer-se um estudo semelhante para o caso de os oito números envolvidos na tarefa serem do dois ao nove, inclusive. Como fazer?

 

Uma estimativa interessante será a de substituir de forma directa e imediata cada valor do cubo anterior pelo seu consecutivo. Vejamos como fica a imagem do cubo:

 

 

Note-se que se passou a obter uma nova soma mágica, de valor 22 e cada par de números afecto a duas das quatro arestas de face do cubo passou a somar 11.

 

Qual será a nova soma mágica que os oitos números consecutivos iniciarem agora no valor 3?

 

Utilizando o procediemento heurístico anterior, a nova soma tem o valor 26, havendo em duas das quatro arestas de cada face do cubo dois números cuja soma é 13:

 

 

Note-se que da 1ª para a 2ª figura, a soma passou de 18 para 22 e da 2ª para a 3ª passou de 22 para 26. Isto significa que por cada figura que se inicie terá sempre uma soma mágica que será igual à soma mágica anterior acrescida de quatro unidades. Ora se tivermos em linha de conta os oito números envolvidos em cada figura, como os poderemos relacionar com a respectiva soma mágica obtida?

 

Esta questão permite algumas explorações matemáticas interessantes. Uma delas pode ser a seguinte: a soma mágica que se obtém resulta sempre do dobro da soma dos dois valores extremos:

 

1ª -  18 = 2 x (1 + 8)

2ª - 22 = 2 x (2 + 9)

3ª - 26 = 2 x (3 + 10)

 

Por outro lado poderemos associar a soma obtida ao menor dos oito números utilizados. Vejamos:

 

Menor ValorSoma Mágica Obtida:

1

2

3

18

22 = 18 + 1 x 4

26 = 18 + 2 x 4

 

Logo, para qualquer valor inicial "n", a soma mágica "s" obtida será sempre originada pelo seguinte algoritmo:

 

s = 18 + (n - 1) x 4

 

Tendo em conta esta lei geral, qual será a soma mágica de um cubo mágico que contemple oito números naturais consecutivos, iniciados pelo valor 15?

 

Pirâmides numéricas

Outubro 24, 2010

Paulo Afonso

Conectar a Álgebra à Geometria, e vice-versa, costuma ser usual no âmbito de actividades de recreação matemática. O exemplo que escolhi para reflexão também apela a este tipo de conexão matemática e visa contribuir para o desenvolvimento do pensamento algébrico.

 

De facto, irei utilizar o objecto matemático - Pirâmide quadrangular - e desafiarei os meus leitores a descobrir o número a colocar na base deste tipo de sólido tendo em conta que esse valor será a soma de quatro outros números, cada um deles a colocar em cada uma das faces laterais do sólido. Contudo, há uma regra para a colocação destes quatro números. Conhecendo-se o primeiro deles, o segundo será sempre o dobro dele acrescido de uma unidade; já o terceiro será o dobro do segundo, também acrescido de uma unidade e o quarto será o dobro do terceiro, acrescido de uma unidade também. Os números poderão ser colocados de acordo com o sentido dos ponteiros do relógio e a planificação do sólido em causa é a seguinte:

 

Se o menor dos números for o 1, quais os restantes?

 

Trata-se de uma tarefa de simples resolução e eis a figura plana que lhe dá resposta:

 

Temos, pois, que o dobro de 1, mais 1 é 3; o dobro de 3, mais 1 é 7; o dobro de 7, mais 1 é 15 e o dobro de 15, mais 1 é 31. Logo, o valor a colocar na base desta pirâmide seria o número 26, pois 26 = 1 + 3 + 7 + 15.

 

Como tarefa simples que é, alarguemos o estudo a três novas pirâmides, iniciadas, respectivamente pelo valor 2, pelo valor 3 e pelo valor 4. Eis as soluções:

 

 

Seria interessante, em contexto de sala de aula, levar os alunos a investigarem possíveis relações existentes entre estas quatro planificações, em termos dos valores numéricos das faces laterais e das respectivas bases. 

 

Uma conclusão possível seria a de que o valor que inicia a figura seguinte é sempre o número que sucede ao menor número que iniciou a figura anterior (1 - 2 - 3 - 4). Já a segunda posição, aquela que é o resultado de se dobrar o primeiro valor em cada figura acrescido de uma unidade, é sempre maior em duas unidades do que o respectivo valor da figura anterior (3 - 5 - 7 - 9). Este tipo de raciocínio também poderia ser feito para o terceiro valor de cada figura, como sendo sempre maior em quatro unidades relativamente ao valor da figura imediatamente anterior (7 - 11 - 15 - 19). Por sua vez, os maiores números de cada planificação também obedecem a uma regularidade numérica. De facto o valor da figura seguinte nessa posição é sempre maior em oito unidades relativamente ao respectivo valor da figura anterior (15 - 23 - 31 - 39).

 

Ora, nestas condições de evidência de várias relações numéricas entre as diferentes planificações das pirâmides, também seria desejável que os alunos tentassem averiguar se os valores das bases se podem relacionar entre si. Será que sim?

 

Uma possível análise, de natureza mais algébrica, poderia ser a que a figura seguinte evidencia:

 

Note-se que se o 1º valor for "x", o segundo será o seu dobro mais uma unidade "2x + 1". Por sua vez, o 3º número será o dobro do 2º, acrescido de uma unidade, isto é: 2 (2x + 1) + 1 = 4x + 2 + 1 = 4x + 3. Já o 4º número será o dobro do 3º, acrescido de uma unidade, ou seja: 2 (4x + 3) + 1 = 8x + 6 + 1 = 8x + 7. Logo, o valor da base resulta da soma de todos os valores das faces laterais: x + (2x + 1) + (4x + 3) + (8x + 7), onde os parêntesis só servem para evidenciar cada uma das quatro somas. Logo, o seu valor será 15x + 11, que mais não do que o produto do valor inicial por 15, acrescido de 11 unidades.

 

Testemos esta lei geral ou algoritmo para o caso de "x", isto é, o valor inicial ser 5:

 

O valor da base será 15 x 5 + 11 = 86.

 

No sentido de se confirmar este valor através da construção da planificação e seguindo as regras acima enunciadas para a escrita dos quatro números laterais, sabe-se que:

 

1º valor ----- 5

2º valor ----- 2 x5 + 1 = 11

3º valor ----- 2 x 11 + 1 = 23

4º valor ----- 2 x 23 + 1 = 47

 

Logo, a soma será 5 + 11 + 23 + 47 = 86:

 

Outra possibilidade de se poder chegar à soma da base passa por se investigar um outro tipo de relação numérica existente entre cada valor inicial e cada soma respectiva das figuras analisadas:

 

Valor inicialSoma da base
126
241
356
471
n

?

 

Note-se que a tabela anterior evidencia que cada soma é igul à soma anterior mais 15 unidades. Logo a mesma pode ser reescrita da seguinte forma:

 

Valor inicialSoma da base
126 = 26 + 0 x 15
241 = 26 + 1 x 15
356 = 26 + 2 x 15
471 = 26 + 3 x 15
n

26 + (n - 1) x 15

 

Logo, testando este algoritmo para o valor "n" inicial 5, confirma também a soma 86, pois: 26 + (5 - 1) x 15 = 26 + 4 x 15 = 26 + 60 = 86.

 

Tirando partido desta reflexão, será capaz de averiguar se o valor 161 pode ser um valor válido a colocar na base de uma pirâmide deste tipo, em que os quatro valores laterais obedecem às regras acabadas de analisar. No caso de ser um valor válido, quais serão os quatro valores a colocar nas faces laterais da pirâmide?

Conexões matemáticas entre os quadrados mágicos e as potências de expoente inteiro

Outubro 14, 2010

Paulo Afonso

As figuras mágicas já foram objecto de análise neste blog, por serem um objecto de recreação matemática propício ao estabelecimento de múltiplas conexões matemáticas. No presente artigo pretendo conectar um desse tipo de figuras (os quadrados de ordem 3) ao tema das potências de expoente inteiro.

 

Comecemos por analisar as seguintes figuras:

  

 

Analisando-se cada uma delas constata-se que são formadas por nove números inteiros consecutivos, iniciando a da esquerda no 1, a do meio no 2 e a da direita no 3. Adicionando-se os três valores de cada linha, cada coluna e cada diagonal, a soma é sempre a mesma em cada figura: na da esquerda há uma soma mágica de 15, na do meio a soma mágica é 18 e na da direita a soma mágica é 21.

 

Existe, pois, um padrão numérico que relaciona as várias somas mágicas que se vão obtendo, a partir do menor número de cada sequência numérica utilizada. De facto, para o início em 1, a soma é 15; para o início em 2, a soma é 15 + 1 x 3; para o início em 3, a soma mágica é 15 + 2 x 3 e assim sucessivamente. 

 

Seria interessante, em contexto de sala de aula de matemática, que os alunos fossem incentivados a investigar esta e outras regularidades existentes nestas mágicas figuras, chegando mesmo à lei geral que permite identificar ou prever uma qualquer soma mágica (s) a partir de um qualquer número inteiro (n) que inicie uma sequência de nove números inteiros consecutivos. Essa lei seria a seguinte s = 15 + (n - 1) x 3.

 

Observando com atenção as três figuras acima, facilmente se constata que a disposição do valor ordinal de cada um dos nove números obedece a uma mesma distribuição geométrica que é a seguinte:

 

 

Ora, tendo em conta esta mesma disposição geométrica, analisemos agora a seguinte figura. será um quadrado mágico?:

 

 

Obviamente que salta à vista não tratar-se de uma quadrado de soma mágica, pois os valores são muito díspares; não são consecutivos. Contudo se em vez de os adicionarmos em linha, em coluna ou em diagonal, os multiplicarmos, teremos uma bela surpresa.

 

De facto:

 

2 x 256 x 8 = 4096

64 x 16 x 4 = 4096

32 + 1 x 128 = 4096

  

2 x 64 x 32 = 4096

256 x 16 x 1 = 4096

8 x 4 x 128 = 4096

 

2 x 16 x 128 = 4096

8 x 16 x 32 = 4096

 

O produto mágico é, pois, 4096. Analisando os nove números em causa verifica-se serem as primeiras nove potências de base 2. Vejamos:

 

 

Em sala de aula, e dependendo do tipo de alunos, poder-se-ia introduzir a regra da multiplicação de potências com a mesma base e expoentes diferentes (mantém-se a base e adicionam-se os expoentes). De facto:

 

21 x 28 x 23 = 212

26 x 24 x 22 = 212

25 x 20 x 27 = 212

  

21 x 26 x 25 = 212

28 x 24 x 20 = 212

23 x 22 x 27 = 212

  

21 x 24 x 27 = 212

23 x 24 x 25 = 212

 

Passemos agora às potências de base 3. Eis a figura com as nove primeiras potências de base 3:

  

 

Note-se que esta figura obedece ao mesmo padrão multiplicativo anterior:

 

31 x38 x 33 = 312

36 x 34 x 32 = 312

35 x 30 x 37 = 312

   

31 x 36 x 35 = 312

38 x 34 x 30 = 312

33 x 32 x 37 = 312

 

31 x 34 x 37 = 312

33 x 34 x 35 = 312

  

Com os respectivos valores das potências, o aspecto da figura será o seguinte:

 

 

Calculemos, pois, o respectivo produto mágico:

 

3 x 6561 x 27 =531441

729 x 81 x 9 = 531441

243 x 1 x 2187 = 531441

 

3 x 729 x 243 = 531441

6561 x 81 x 1 = 531441

27 x 9 x 2187 = 531441

 

3 x 81 x 2187 = 531441

27 x 81 x 243 = 531441

 

Analisemos, ainda as nove primeiras potências de base 4:

 

 

Neste caso volta a haver um produto mágico, de valor 412, isto é 16777216.

 

Como exploração extra poder-se-ia substituir a base destas potências pelo quadrado de dois, o que daria a seguinte nova figura:

 

 

Tirando partido desta substituição, poder-se-ia introduzir ou rever o conceito de potência de uma potência, destacando a regra operativa de manter a base e multiplicar os expoentes. Eis como figura a figura mágica:

 

 

Logo, o produto mágico 412 será equivalente ao valor da potência 224.

 

Tendo em conta esta regularidade, quais são os nove números que originam um quadrado mágico com produto mágico 912? 

Pontes geométricas - conexão aos números triangulares

Outubro 07, 2010

Paulo Afonso

Atravessar um rio dispondo apenas de uma pequena barcaça costuma estar associado a vários desafios de recreação matemática. De facto, uma rápida pesquisa na Internet, sobre (a) o pastor, o lobo, a ovelha e a couve, (b) o pastor, o gato, o canário e o saco de alpista, ou (c) os canibais e os missionários, entre outros, permite constar que são apenas alguns dos desafios de travessia de um rio que existem. Por norma exigem uma apurado raciocínio e a escolha de uma boa estratégia de resloução, como seja o esquema ou figura.

 

Contudo, a minha reflexão não irá incidir nesse tipo de modo de atravessar um rio, pois em vez de uma barcaça pretende-se atravessá-lo a pé através de pontes flutuantes, formadas exclusivamente por objectos geométricos.

 

Veja-se a ponte seguinte e tente atravessar para a margem direita do rio seguindo a seguinte regra: só se pode deslocar para baixo, sempre no sentido esquerda, direita. Quantas são as possibilidades que existem?

 

Numa perspectiva de resolução sistematizada, seria interessante atribuir a cada círculo uma referência, como seja um número ou uma letra:

 

De seguida poder-se-á fazer uma lista organizada, evidenciando todas as possibilidades que existem:

 

A-E-I

B-F-J

C-G-K

 

A-E-F-J

B-F-G-K

 

A-E-F-G-K

 

Existem, pois, 3 + 2 + 1 possibilidades, isto é, 6 possibilidades diferentes de atravessar esta ponte, de acordo com as regras estipuladas.

  

Imaginemos, agora, que se aumentava um novo objecto em cada uma das margens, bem como na coluna central, como ilustra a figura seguinte:

  

 

Mantendo as condições ou regras do enunciado anterior, quantas serão, agora, as possibilidades da travessia do rio?

  

Eis novamente a figura referenciada em cada um dos objectos geométricos:

  

  

Vejamos as possibilidades:

  

A-F-K

B-G-L

C-H-M

D-I-N

  

A-F-G-L

B-G-H-M

C-H-I-N

  

A-F-G-H-M

B-G-H-I-N

  

A-F-G-H-I-N

  

Note-se que as possibilidades passaram a ser 4 + 3 + 2 + 1 = 10.

  

Continuando a aumentar um objecto geométrico em cada margem e na coluna central, eis como fica a figura:

 

Atribuindo as respectivas marcas:

 

Vejamos a análise:

 

A-G-M

B-H-N

C-I-O

D-J-P

E-K-Q

 

A-G-H-N

B-H-I-O

C-I-J-P

D-J-K-Q

 

A-G-H-I-O

B-H-I-J-P

C-I-J-K-Q

 

A-G-H-I-J-P

B-H-I-J-K-P

 

A-G-H-I-J-K-Q

 

Verificam-se, pois, 5 + 4 + 3 + 2 + 1 = 15 possibilidades.

 

Em contexto de sala de aula seria interessante que os alunos fossem solicitados a identificar ou descobrir a regularidade numérica que suporta este conjunto de tarefas. Seria desejável que estabelecessem a seguinte relação: 6 + 4 = 10 e 10 + 5 = 15, no sentido de proporem a seguinte solução que seria 15 + 6 = 21 possibilidades de atravessar o rio na condição de se aumentar mais um objecto geométrico em cada margem e na coluna do meio.

 

Além disto, também seria desejável conectar esta regularidade ou padrão numérico ao tema dos números figurados, designadamente os números triangulares. De facto, como já tive oportunidade de reflectir em artigos anteriores, a sequência de números triangulares (1, 3, 6, 10, 15, 21, 28,...) é gerada pelo seguinte algoritmo (n2 + n) : 2, sendo "n" um número natural.

 

Sendo assim, poder-se-á reflectir acerca de como será a disposição dos objectos geométricos nas margens e na coluna centraldo rio, de modo a que o número de possibilidades de o atravessar coincida com o 10º número triangular. Qual a sua sugestão?

Dependência numérica - um caso de regularidades

Setembro 17, 2010

Paulo Afonso

No âmbito da recreação matemática faz todo o sentido confrontar as pessoas com situações problemáticas, quebra-cabeças, puzzles ou tarefas de investigação que impliquem uma avaliação permanente durante o próprio processo de resolução e não apenas ao fim, após a obtenção de uma eventual solução.

 

Ora no final do meu período de férias de Verão tive a oportunidade de visitar a sede da Associação de Professores de Matemática em Lisboa (APM) e deparei-me com uma caixinha cúbica colorida que me despertou, de imediato, a atenção. Associada à sugestiva caixa estava um título que também contribuiu decisivamente para a sua aquisição: "Génio da Matemática - descubra o prazer da Matemática" do autor Charles Phillips.

 

Num breve resumo acerca do conteúdo da caixa podia ler-se "A matemática é divertida - e os quebra-cabeças são óptimos para aprender os seus fundamentos [...]". Claro está que não hesitei em adquirir esta enigmática caixa. Ao sair da sede, a primeira coisa que fiz no carro foi abrir a caixa para saber qual era o seu conteúdo. Eis que encontrei um exemplar das Torres de Hanói e um mini-livro com cerca de 100 problemas, todos eles muito ricos em termos desta área do saber, que é a Matemática Recreativa.

  

De vários problemas que despertaram a minha curiosidade, escolho para reflexão o problema 35, existente na página 78 desse precioso livrinho. Vejamos a imagem seguinte:

 

 

O objectivo do problema é o de se colocarem nas células vazias os números inteiros de 4 a 9, inclusive, mas tendo em conta as seguintes condições:

1- Não pode haver números repetidos;

2 - Ter-se-ão que adicionar cada par de números adjacentes na vertical e na horizontal e não pode haver somas repetidas.

 

Ora, como o leitor terá a oportunidade de experimentar, trata-se de um desafio muito interessante, pois possibilita mais do que uma solução. Além disto incute no resolvedor a necessidade permanente de fazer verificações durante todo o processo de resolução, pois as duas condições prévias a isso obrigam.

 

Eis uma solução possível:

 

 

Verificando cada soma, temos os seguintes resultados:

 

Adições na Horizontal

Adições na Vertical

a) 1 + 2 = 3

b) 2 + 3 = 5

c) 5 + 6 = 11

d) 6 + 7 = 13

e) 4 + 8 = 12

f) 8 + 9 = 17

a) 1 + 5 = 6

b) 5 + 4 = 9

c) 2 + 6 = 8

d) 6 + 8 = 14

e) 3 + 7 = 10

f) 7 + 9 = 16

 

Constata-se, pois, que não há somas repetidas e, além disto, todos os números inteiros do 1 ao 9 constam na figura.

 

Como referi anteriormente, trata-se de uma situação que não pode ser resolvida sem que haja verificações permanentes durante o processo de resolução. De facto, a estratégia da tentativa e erro, só por si, não será uma estratégia muito válida, pois carece de várias tomadas de decisão por parte do resolvedor, uma vez que tem de ter em linha de conta as dezasseis somas em simultâneo.

 

Porque sou muito curioso e tenho por hábito extrapolar as situações de que gosto de resolver a outros contextos, pensei para mim próprio se o desafio fosse colocado tendo em conta exclusivamente os nove primeiros números ímpares (1, 3, 5, 7, 9, 11, 13, 15, 17). Desafiei-me, então, com a seguinte figura:

 

 

 

Depois de algum tempo dedicado à resolução, com muitos avanços e recuos, lá descobri uma possível solução:

 

 

Realizando a confirmação final, eis as dezasseis somas obtidas:

 

Adições na Horizontal

Adições na Vertical

a) 1 + 3 = 5

b) 3 + 5 = 8

c) 9 + 11 = 20

d) 11 + 13 = 24

e) 7 + 15 = 22

f) 15 + 17 = 32

a) 1 + 9 = 10

b) 9 + 7 = 16

c) 3 + 11 = 14

d) 11 + 15 = 26

e) 5 + 13 = 18

f) 13 + 17 = 30

 

Continuando a apelar ao meu sentido indagador procurei investigar se haveria algum aspecto comum às duas resoluções e, de imediato, apercebi-me que a colocação dos valores nas células dependia de um padrão, que é o seguinte:

 

 

De facto, o menor dos valores estava sempre colocado na célula superior esquerda e o maior deles ocupava sempre a célula inferior direita. Além disto, a linha de cima continha sempre os três menores valores de cada sequência numérica, aumentando da esquerda para a direita. o mesmo se passava na segunda linha, com interrupção do 4º elemento cuja posição era sempre a da quadrícula inferior esquerda. Por fim, entre este valor e o mais elevado ficava sempre o 8º valor.

 

Como consequência imediata desta constatação, quis testar esta regularidade com os nove primeiros números pares (2, 4, 6, 8, 10, 12, 14, 16, 18). Foi então que sem qualquer tipo de esforço mental me limitei a distribuir estes nove valores nas respectivas posições da nova figura. Eis o resultado:

 

 

Uma vez mais, confirma-se a regularidade ou padrão numérico identificado, pois as dezasseis somas foram todas diferentes:

 

Adições na Horizontal

Adições na Vertical

a) 2 + 4 = 6

b) 4 + 6 = 10

c) 10 + 12 = 22

d) 12 + 14 = 26

e) 8 + 16 = 24

f) 16 + 18 = 34

a) 2 + 10 = 12

b) 10 + 8 = 18

c) 4 + 12 = 16

d) 12 + 16 = 28

e) 6 + 14 = 20

f) 14 + 18 = 32

 

Por fim fui consultar a solução que o autor apresentava para o desafio colocado e constatei que era diferente do que eu tinha obtido:

 

 

Note-se que a disposição dos números já não obedece ao mesmo padrão anterior. Por isso desafio cada leitor a descobrir o novo padrão e a testá-lo também com os primeiros nove números ímpares e, depois, com os primeiros nove números pares.

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"