Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Explorando o factorial do número

Janeiro 24, 2010

Paulo Afonso

Em Matemática existem alguns tipos de números que, quando colocados em sequência, crescem de uma forma muito rápida, pois o seu padrão de crescimento aponta nesse sentido. Veja-se, por exemplo, a sequência dos números cúbicos: 1, 8, 27, 64, 125, ... ou a sequência das potências de base dois: 1, 2, 4, 8, 16, 32, 64, 128, 256,... Contudo, outras há cujo padrão de crescimento é mais lento, como seja o caso dos números naturais: 1, 2, 3, 4, 5, 6,... ou dos números pares: 2, 4, 6, 8, 10, 12, ...

 

O conjunto de números que apresento a seguir também evidencia crescer muito rapidamente, pois a lei geral que os gera leva a que isso aconteça: 1, 2, 6, 24, 120, 720, 5040, ... Qual o próximo termo da sequência?

 

Talvez influenciados pelo título deste artigo, facilmente poderemos verificar que:

1 = 1

2 = 2 x 1

6 = 3 x 2 x 1

24 = 4 x 3 x 2 x 1

120 = 5 x 4 x 3 x 2 x 1

720 = 6 x 5 x 4 x 3 x 2 x 1

5040 = 7 x 6 x 5 x 4 x 3 x 2 x 1

Continuando este padrão de crescimento, o próximo termo resultará do seguinte produto 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1, isto é, será o número 40320.

 

Sendo assim, facilmente se percebe que estamos perante uma sequência numérica muito especial, que é a que resulta dos factoriais dos números naturais (n!). De facto, 1 = 1!, 2 = 2!, 6 = 3!, 24 = 4!, 120 = 5!, 720 = 6!, 5040 = 7! e, logicamente, 40320 = 8!

 

Tendo em conta esta regularidade, qual o factorial do número 10?

 

Esta questão é facilmente resolvida pelos seguintes cálculos: 10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 3628800.  

 

Este tipo de números revela ser muito importante em vários temas matemáticos, como seja o caso das permutações, das combinações ou dos arranjos.

 

Imaginemos que quatro atletas de salto em altura estão a disputar a final de uma prova muito importante. Sabendo-se que os seus nomes são Artur, Bento, Carlos e Daniel, como pode ser pensada a recepção das medalhas dos três elementos pertencentes ao pódio, isto é, 1º, 2º e 3º lugares? No fundo, pergunta-se como poderá ser formado o pódio?

 

Note-se que um destes quatro atletas não terá acesso ao pódio, pelo que poderemos tentar prever quantas são as combinações possíveis de três dos quatro atletas poderem ser os premiados.

 

Sendo assim, há quatro combinações. Uma delas deixará o Artur de fora do pódio, outra deixará o Bento, uma terceira possibilidade é a que deixa o Carlos excluído e a quarta combinação envolve apenas os atletas Artur, Bento e Carlos, ficando, pois, o Daniel de fora do pódio. Vejamos as quatro combinações possíveis:

 

a - Bento, Carlos e Daniel,

b - Artur, Carlos e Daniel,

c - Artur, Bento e Daniel,

d - Artur, Bento e Carlos.

 

Estas 4 combinações de três atletas resultam da aplicação do respectivo algoritmo aos quatro atletas:

 

4C3 = 4! / (4 - 3)! x 3! = 4 x 3 x 2 x 1 / 1 x 3 x 2 x 1 = 24 / 6 = 4.

 

Realmente, o tema das combinações está associado ao factorial do número. Contudo somente a sua associação ao tema das permutações nos permite encontrar a resposta para o desafio colocado.

 

De facto, note que para o caso em que é o Artur a ficar excluído do pódio há seis possibilidades de o mesmo ser formado:

 

A B C D E F

1º Bento

2º Carlos

3º Daniel

1º Bento

2º Daniel

3º Carlos

1º Carlos

2º Daniel

3º Bento

1º Carlos

2º Bento

3º Daniel

1º Daniel

2º Bento

3º Carlos

1º Daniel

2º Carlos

3º Bento

 

Note-se, pois, que este valor 6 resulta de se permutarem de posição estes 3 atletas. Logo, trata-se de mais um caso de aplicação do factorial do número, pois 6 = 3!

 

Se isto é verdade para o caso de ter sido o Artur (A) a ficar excluído do pódio, também o é para o caso de ter sido o Bento (B), ou o Carlos (C) ou o Daniel (D).

 

Logo, a tabela seguinte evidencia as 24 possibilidades de constituição do pódio, pois 4 x 3! = 4 x 6 = 24:

 

B - C - D B - D - C C - D - B C - B - D D - B - C D - C - B
A - C - D A - D - C C - D - A C - A - D D - A - C D - C - A
A - B - D A - D - B B - D - A  B - A - D D - A - B D - B - A
A - B - C A - C - B B - C - A B - A - C C - A - B C - B - A

 

Em síntese, a resposta para o desafio colocado é esta das 24 possibilidades, que mais não são do que 24 arranjos de quatro atletas, três a três. Logo, conclui-se que os arranjos de quatro atletas, três a três, é o produto das combinações desses quatro atletas, três a três, pelo factorial de três:

 

4A3 = 4C3 x 3! = 4 x 6 = 24

 

Vejamos um novo caso envolvendo o factorial de um número:

 

Tendo em conta os seguintes números: 10, 20, 30, 0, 50, 60, 70, 80, 90, como se poderá obter a soma 100, usando apenas três parcelas não repetidas?

 

Esta tarefa permite que se encontrem os seguintes quatro casos:

a) 70 + 20 + 10

b) 60 + 30 + 10

c) 50 + 40 + 10

d) 50 + 30 + 20

 

Tendo em conta estas quatro decomposições do número 100, será possível converter a figura seguinte num triângulo mágico de soma 100, isto é, poder-se-ão preencher os círculos com os valores envolvidos nestas adições para que a soma em cada lado do triângulo seja sempre 100?:

 

 

 

Este desafio leva a que tentemos testar as quatro somas, três de cada vez, pelo que o tema das combinações volta a estar presente. Uma vez mais, combinando as 4 somas, três a três, obtém-se o valor 4:

 

4C3 = 4! / (4-3)! x 3! = 4 x 3! / 3! = 4

 

Eis as quatro combinações:

1 - a) - b) - c)

2 - a) - b) - d)

3 - a) - c) - d)

4 - b) - c) - d)

 

Testemos caso a caso:

1º caso com as seguintes adições:

a) 70 + 20 + 10               b) 60 + 30 + 10                  c) 50 + 40 + 10

 

Como facilmente se pode constatar, este é um caso de impossibilidade, porque existe uma parcela comum a todas as adições, que é o valor 10. Logo, o mesmo nunca poderia pertencer à figura devido ao facto de, no máximo, um valor apenas poder pertencer a duas adições.

 

Testemos o 2º caso, com as seguintes adições:

a) 70 + 20 + 10         b) 60 + 30 + 10          d) 50 + 30 + 20

 

Note-se que entre a) e b) há apenas um valor comum, que é o 10. Por sua vez, entre a) e d) também só existe um valor comum, que é o 20. Por último, entre b) e d) existe outro valor comum, que é o 30. Logo, serão estes os valores a fazerem parte dos vértices do triângulo, por pertencerem, em simultâneo a duas adições. Os restantes são colocados nos espaços sobrantes, pelo que se consegue obter uma figura mágica de soma 100:

 

 

Testemos, agora, o 3º caso, que contempla as seguintes somas:

a) 70 + 20 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Entre a) e c) existe o valor 10 como sendo o único comum; entre a) e d) existe o valor 20 e entre c) e d) existe o valor 50. Usando-os nos vértices e os restantes nos espaços sobrantes, voltamos a obter um novo caso de sucesso:

 

 

Resta testar o 4º caso, formado pelas seguintes adições:

b) 60 + 30 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Ora, entre b) e c) existe o valor 10 comum; já entre b) e d) é o valor 30 e entre c) e d) é o valor 50. Testando estes valores, obtém-se um terceiro caso de sucesso, diferente dos dois anteriores:

 

 

Existem, pois, três respostas possíveis para a tarefa enunciada. Uma vez mais, o recuso o factorial do número teve aplicação na resolução da mesma.

 

Se cinco pessoas costumarem viajar todos os dias no mesmo carro, ao fim de quantos dias estará a repetir-se a forma como as mesmas vão sentadas nos cinco lugares desse carro? (nota: todos podem conduzir o carro, mas só mudam de posição ao iniciar um novo dia).

 

Cadelas que não se entendem - um caso de permutações

Março 09, 2009

Paulo Afonso

Os temas das permutações, arranjos ou combinações costumam ser o suporte de algumas actividades de recreação matemática. Contudo, nem sempre o domínio desses conteúdos matemáticos é condição necessária para que essas actividades de recreação matemática sejam resolvidas, pois pode haver o recurso a outro tipo de estratégias de resolução, como seja a tentativa e erro ou a utilização de uma lista organizada.

O exemplo que escolhi para me auxiliar a reflectir sobre este tema tem a ver com um caçador e com os seus dois cães e três cadelas.

Os cães chamam-se Gorbi e Júpiter; as cadelas chamam-se Bianca, Upi e Violeta.

No respectivo canil, o caçador não gosta de colocar os cinco animais sempre no mesmo compartimento ou divisão. Como sabe que as três cadelas, quando presas no canil, estão sempre a ladrar umas para as outras, costuma intervalá-las com um dos cães.

Sabendo que os cinco compartimentos ou divisões estão colocados uns ao lado dos outros, como mostra o esquema seguinte, averigue como podem ser distribuídos os cinco animais de modo a que as três ou duas cadelas nunca fiquem juntas:

CANIL:
         

Esta actividade obriga a que se faça um estudo exaustivo de todas as possibilidades que existem de se distribuírem os cinco animais nos cinco compartimentos.

A opção pela realização de uma lista organizada iria permitir obter 120 casos de distribuição diferente dos cinco animais, pois estamos perante o conceito matemático das permutações, que envolve o conceito de número factorial (5!). De facto, 5! = 5 x 4 x 3 x 2 x 1 = 120. Contudo, somente 12 desses casos permitem que as três cadelas tenham um cão entre elas, de forma a que não ladrem umas para as outras. Esses 12 casos são os seguintes:

Bianca Gorbi Upi Júpiter Violeta
Bianca Gorbi Violeta Júpiter Upi
Bianca Júpiter Upi Gorbi Violeta
Bianca Júpiter Violeta Gorbi Upi
Upi Gorbi Violeta Júpiter Bianca
Upi Gorbi Bianca Júpiter Violeta
Upi Júpiter Violeta Gorbi Bianca
Upi Júpiter Bianca Gorbi Violeta
Violeta Gorbi Upi Júpiter Bianca
Violeta Gorbi Bianca Júpiter Upi
Violeta Júpiter Upi Gorbi Bianca
Violeta Júpiter Bianca Gorbi Upi

Um amigo deste caçador quando tinha apenas um cão (Bigodes) e duas cadelas (Laica e Felpuda) também os colocava em compartimentos individuais, semelhantes aos do seu amigo, pois as cadelas só sossegavam quando tinham o cão no compartimento situado entre os seus. Para não colocar sempre os animais nos mesmos compartimentos, costumava mudá-los de sítio, de modo utilizar as duas possíbilidades que tinha:

Laica Bigodes Felpuda
Felpuda Bigodes Laica

Uma vez mais, 3! = 3 x 2 x 1 = 6, mas destas seis possibilidades, apenas as duas evidenciadas na tabela anterior satisfaziam as condições de entendimento das cadelas...

Quando a este caçador lhe deram um novo cão (Piloto), mandou fazer um novo compartimento junto aos dos outros animais e viu aumentadas as possibilidades de colocar as cadelas em várias posições, sempre tendo entre elas pelo menos um dos cães. Feitas as contas, conseguia distribuir os quatro animais por 24 possibilidades diferentes (4!), mas somente em 12 desses casos não teria problemas com as cadelas, como mostra a seguinte tabela: 

Laica Bigodes Felpuda Piloto
Laica Piloto Felpuda Bigodes
Felpuda Bigodes Laica Piloto
Felpuda Piloto Laica Bigodes
Laica Bigodes Piloto Felpuda
Laica Piloto Bigodes Felpuda
Felpuda Bigodes Piloto Laica
Felpuda Piloto Bigodes Laica
Piloto Laica Bigodes Felpuda
Piloto Felpuda Bigodes Laica
Bigodes Laica Piloto Felpuda
Bigodes Felpuda Piloto Laica

Entretando a Bianca e o Júpiter acasalaram e o seu amigo ofereceu-lhe o mais belo cachorro desta ninhada, a que deu o nome de Forasteiro. De imediato mandou fazer um novo compartimento junto aos dos outros animais e quando este cresceu também o envolveu neste tipo de rotatividade de posição por entre os cinco compartimentos. Neste caso, das 120 permutações possíveis (5!), verificou que havia 72 casos em que as duas cadelas nunca ficariam em compartimentos adjacentes.

Ao verificar estas possibilidades interrogou-se quantas seriam se em vez de ter duas cadelas e três cães, tivesse duas cadelas e quatro cães. Qual será a resposta, de modo a que as cadelas continuem a não ficar em compartimentos adjacentes?

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"