Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Conexão matemática entre as potências de base dois, os números primos e os números perfeitos

Dezembro 11, 2011

Paulo Afonso

Tem sido apanágio deste blog evidenciar a Matemática como ciência global, isto é, onde os conceitos parecem interligar-se uns com os outros como que unidos por qualquer obra divina! Desta feita irei expor o resultado da reflexão que efetuei a propósito de pesquisas relacionadas com os conceitos matemáticos que dão nome a este artigo.

 

Começo por propôr uma investigação que permita identificar se haverá alguns números primos que resultem da diferença entre as várias potências de base dois, com expoente natural, e a unidade.

 

Uma possível solução passa por se fazer uma teste para as primeiras dez potências de base 2:

 

n = 121 - 1 = 2 - 1 = 1
n= 222 - 1 = 4 - 1 = 3
n = 323 - 1 = 8 - 1 = 7
n = 424 - 1 = 16 - 1 = 15
n = 525 - 1 = 32 - 1 = 31
n = 626 - 1 = 64 - 1 = 63
n = 727 - 1 = 128 - 1 = 127
n = 828 - 1 = 256 - 1 = 255
n = 929 - 1 = 512 - 1 = 511
n= 10210 - 1 = 1024 - 1 = 1023

 

Tendo em conta todas as diferenças obtidas, existem algumas que são números primos: 3, 7, 31, 127 e 511. À exceção do 1, os restantes são, pois, números compostos por admitirem mais divisores além deles próprios e da unidade.

 

Ora, centremo-nos nos números que são primos: 3, 7, 31, 127 e 511. Multipliquemos cada um deles pela mesma potência de base dois que lhe deu origem mas subtraindo ao expoente uma unidade. Que produtos se irão obter?

 

Uma tabela semelhante à anterior poderá ser um precioso auxílio:

 

n = 23 x 2n-1 = 3 x 2 = 6
n = 37 x 2n-1 = 7 x 4 = 28
n = 531 x 2n-1 = 31 x 16 = 496
n = 7127 x 2n-1 = 127 x 64 = 8128
n = 9511 x 2n-1 = 511 X 256 = 130816

  

Uma particularidade interessante é o facto de todos os produtos obtidos serem números pares. Investiguemos, agora, acerca dos divisores dos três primeiros (6, 28 e 496). Quais são os divisores de cada um?

 

Recorrendo ao processo de fatorização em fatores primos temos os seguintes resultados:

 

Fatorização do 6Fatorização do 28Fatorização do 496
  

 

6 = 2 x 328 = 22 x 7496 = 24 x 31

 

Tendo em conta os expoentes dos fatores primos de cada fatorização podemos saber o número de divisores de cada número. Assim, no caso do 6, os expoentes dos fatores são 1 e 1, pelo que este número terá (1 + 1) x (1 + 1) = 2 x 2 = 4 divisores:

 

 

Por sua vez, os fatores do 28 têm expoentes 2 e 1, pelo que este número terá (2 + 1) x (1 + 1) = 3 x 2 = 6 divisores:

 

 

Já o 496 terá (4 + 1) x (1 + 1) = 5 x 2 = 10 divisores:

 

 

Qual será, para cada caso, a soma dos seus divisores próprios, isto é, a soma de todos os divisores do número, excluindo ele próprio?

 

Vejamos:

a) 1 + 2 + 3 = 6

b) 1 + 2 + 4 + 7 + 14 = 28

c) 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496

 

Constata-se, pois, que em cada caso a soma dos divisores próprios do número coincide com esse número. Logo, o 6, o 28 e o 496 fazem parte de um fascinante conjunto de números designado por conjunto dos números perfeitos.

 

A este propósito sugiro a consulta do seguinte site: http://www.ime.usp.br/~leo/imatica/historia/nperfeitos.html.

 

Será que o 8128 e 130816 também são números perfeitos? A ser assim, qual o procedimento algorítmico que permite a sua obtenção?

 

 

Das regularidades numéricas ao conceito de Triângulo de Pascal

Março 05, 2011

Paulo Afonso

O tema das regularidades numéricas tem vindo a ser objecto de reflexão neste espaço virtual. Muito associado ao tema do pensamento algébrico, as regularidades de natureza numérica e/ou geométrica contribuem decisivamente para a estruturação deste tipo de pensamento.

 

O exemplo que trago agora para partilhar passa por solicitar uma análise ao seguinte conjunto de números no sentido de se encontrar alguma regularidade entre eles:

 

 

De entre várias possibilidades de resposta, destacamos a análise a cada linha horizontal. Para cada uma das três linhas verifica-se a existência do conceito matemático "o dobro de ou 2x". Vejamos:

 

 

Existe, pois, uma regularidade segundo este nível de análise. Centremos agora a nossa atenção ao nível das colunas. Outras regularidades passam a ser evidenciadas:

 

 

Note-se que o operador aditivo em cada caso é sempre igual e de caso para caso vai dobrando o seu valor sucessivamente.

 

Se a análise incidir em alguns valores colocados não em linha nem em coluna mas, sim, em linha oblíqua, eis outras regularidades interessantes a destacar:

 

 

Analisando-se as várias igualdades numéricas, constata-se que as somas obtidas são dobros sucessivos a partir do valor 4, isto é: 4, 8 e 16. Por sua vez, os produtos obtidos também são dobros sucessivos a partir do valor 12, ou seja: 12, 24 e 48. Além disto, cada parcela envolvida em cada adição também obedece a esta regularidade do "dobro de": (1, 2 e 4; 3, 6 e 12). Já ao nível dos factores, há sempre um que se mantém, que é o valor 3 e o outro factor continua na lógica do "dobro de": (4, 8 e 16).

 

Voltando ao conjunto inicial:

 

Seria desejável que em situação de sala de aula se tentasse perceber qual a lei geral que permitia descrever o comportamento dos valores existentes em cada linha horizontal. Qual será essa lei?

 

Obviamente que se percebe facilmente que os valores da primeira linha são as cinco primeiras potências de base dois, de expoente inteiro, cuja lei geral é 2n. Uma análise mais detalhada aos restantes valores permite que se identifique uma extensão desta lei geral para 2 x 2n e 3 x 2n, respectivamente:

 

 

Ora, como ja tive oportunidade de referenciar em outros artigos, as potências de base dois podem ser associadas ao triângulo de Pascal. Recordemos esta conexão matemática:

 

 

De facto, adicionando os valores em cada linha horizontal neste tipo de triângulo, obtém-se o conjunto destas potências. Esta é, pois, uma figura triangular que pode ser associda à lei geral 2n que gera estas potências de base dois. Como será a figura triangular que poderá ser associada a lei geral seguinte: 2 x 2n?

 

Certamente que será fácil conjecturar uma figura tipo a do triângulo de Pascal em que os valores dos lados passam de 1 para 2. vejamos a figura:

 

 

Confirmam-se, pois, os valores 2, 4, 8, 16 e 32 como sendo as somas dos valores colocados em linha horizontal nesta figura. Pela mesma ordem de ideias, a lei geral 3 x 2n materializa-se na seguinte figura:

 

 

Note-se que os valores do início e do final de cada linha passaram a ser o número 3.

 

Tendo em conta este tipo de análise qual será a figura que está associada à seguinte lei geral: 10 x 2n?

Registar os números inteiros com o minicomputador Papy

Novembro 23, 2009

Paulo Afonso

Enquanto professor de Didáctica da Matemática sou um fiel adepto da utilização de materiais manipuláveis para o ensino-aprendizagem dos conceitos matemáticos. Geoplanos, tangrans, calculadores multibásicos, material Cuisenaire, blocos lógicos, polidrons, poliminós, blocos padrão, etc., costumam fazer parte das minhas aulas. Contudo, hoje vou dedicar a minha reflexão a um outro material manipulável, pouco conhecido em Portugal, a avaliar pelos escritos que existem. Refiro-me ao minicomputador Papy. Trata-se de um material didáctico estruturado para o ensino do cálculo aritmético elementar e foi concebido por Geoges Papy, professor da Faculdade de Ciências na Universidade de Bruxelas. Nos próximos artigos irei explorá-lo para o cálculo, mas desta vez irei apenas demonstrar como é o seu funcionamento ao nível do registo de quantidades inteiras.O seu aspecto é o seguinte:

Em homenagem ao matemático Cuisenaire, Papy utilizou estas quatro cores para representar os mesmos valores numéricos que o material Cuisenaire.

Assim, se uma peça ou uma marca estiver posicionada na quadrícula branca estará a representar a quantidade 1; se estiver na quadrícula vermelha representará a quantidade 2; se estiver na rosa representará a quantidade 4 e se estiver na castanha representará a quantidade 8. Logo, trata-se de um material que se baseia na base 2 ou binário:

Quantidade 1 Quantidade 2 Quantidade 4 Quantidade 8

Este material serve, pois, para se representarem as restantes quantidades inteiras até ao 9 inclusive:

3 = 1 + 2 5 = 1 + 4 6 = 2 + 4 7 = 1 + 2 + 4 9 = 1 + 8

Este material só permite, pois, a existência de uma marca em cada quadrícula, como se pode observar acima. Por outro lado, caso exista uma marca na quadrícula castanha (valor 8) já não pode haver marca na quadrícula vermelha (valor 2) ou na quadrícula rosa (valor 4). De facto, estar-se-ia para cada caso anterior a atingir a ordem das dezenas, pelo que seria necessário juntar uma nova placa. Veja-se como se representa, então, o valor 10 e o valor 12:

Quantidade 10 (10 + 0) Quantidade 12 (10 + 2)

Percebendo-se estas regras básicas, como se representa, por exemplo, a quantidade 357?

A resolução passa por se usar uma nova placa para representar a ordem das centenas. Ora, como sabemos que 357 = 300 + 50 + 7 e que 300 = 100 + 200; 50 = 10 + 40; 7 = 1 + 2 + 4, então fica assim:

Imagine-se que um pastor pretendia representar a quantidade de ovelhas do seu rebanho usando este tipo de material. Ao utilizá-lo obteve a seguinte representação. Está bem preenchido? Quantas ovelhas terá o pastor?

Podemos constatar que o calculador foi usado incorrectamente. Por isso vamos dispor as marcas de forma precisa e correcta. Convém fazê-lo por etapas ou por partes:

1º - dois grupos de 2 origina um grupo de 4:

Tendo sido substituídos esses dois grupos de 2 por um de 4, resulta que temos um grupo de 8 e um grupo de 4, pelo que a quantdade resultante 12 deverá ser convertida numa dezena e em duas unidades:

Constata-se agora que há duas dezenas, pelo que têm que ser substituídas por um grupo de 20:

 

 Por sua vez, dois grupos de 40 terão de ser substituídos por um grupo de 80:

 

Um grupo de 80 e um grupo de 20 deverão dar origem a uma centena:

Por sua vez, duas centenas originarão um grupo de 200:

Eis o resultado final de 203 ovelhas:

Em síntese e fazendo-se todas as alterações num mesmo esquema, o seu aspecto gráfico deverá ser o seguinte:

Faça uma resolução do mesmo tipo para a seguinte disposição incorrecta de marcas:

Triângulo de Pascal - múltiplas conexões matemáticas

Novembro 05, 2008

Paulo Afonso

O triângulo de Pascal permite o estabelecimento de múltiplas conexões matemáticas, pois interliga-se com vários conceitos desta disciplina. 

No âmbito da recreação matemática, poder-se-ia desafiar os sujeitos a encontrarem regularidades ou particularidades interessantes no seguinte triângulo numérico, designado por triângulo de Pascal:

 

Não pretendendo esgotar o tema, neste artigo vou debruçar-me sobre algumas respostas possíveis para o desafio acima colocado.

Assim, uma primeira observação que se pode fazer é que este triângulo contempla, por duas vezes, a sequência dos números naturais:

 

Por outro lado, também contempla, por duas vezes, a sequência dos números triangulares, isto é, os que podem originar figuras triangulares, como tive oportunidade de abordar nos dois artigos anteriores:

 

Além disto, o triângulo de Pascal também contempla a sequência dos números tetraédricos:

 

Por seu turno, usando o modelo stick de hóquei permite encontrar-se rapidamente uma soma de várias parcelas de números sucessivos de uma mesma linha obliqua do triângulo:

O tema das probabilidades também poderá ser associado a este triângulo. Para tal, tente resolver a seguinte situação problemática: "Ao lançar ao ar uma moeda honesta três vezes, qual a probabilidade de saírem duas caras?"

A tabela seguinte permite sistematizar uma possível resolução, contemplando o caso de não saírem caras, sair apenas uma cara, duas caras ou saírem três caras:

Zero caras Uma cara Duas caras Três caras
ccc

Ccc

cCc

ccC

CCc

CcC

cCC

CCC
1 3 3 1

Em termos de resolução da situação proposta, dos 8 casos possíveis, apenas 3 são favoráveis a saírem duas caras, pelo que a probabilidade de isso  ocorrer é de apenas  0,375.

Note-se que os oito casos possíveis coincidem com os valores existentes na quarta linha do triângulo de Pascal:

Face a esta observação será interessante testar a conjectura de que os valores da linha seguinte do triângulo de Pascal possam representar os casos possíveis de saírem zero caras, uma cara, duas caras, três caras ou quatro caras ao lançar-se uma moeda honesta ao ar quatro vezes.

A tabela e o triângulo seguintes confirmam esta conjectura:

Zero caras Uma cara Duas caras Três caras Quatro caras
cccc

Cccc

cCcc

ccCc

cccC

CCcc

cCCc

ccCC

CcCc

cCcC

CccC

CCCc

CCcC

CcCC

cCCC

CCCC
1 4 6 4 1

O cálculo combinatório pode, igualmente, ser associado a este triângulo aritmético.

Tentemos resolver a seguinte situação: "O João tem um autocolante de cada um dos seguintes clubes de futebol: Sporting (S), Benfica (B), Porto (P) e Académica (A). Quais as possibilidades de os colar, de forma ordenada, no seu cacifo da escola, optando apenas por três deles?"

Esta situação pode ser resolvida através de uma tabela como a seguinte:

ABS ASB SAB SBA BAS BSA
ABP APB PAB PBA BAP BPA
BSP BPS PBS PSB SBP SPB
ASP APS PAS PSA SAP

SPA

A primeira coluna da tabela anterior evidencia que há 4 combinações possíveis, que resultam em 24 arranjos: A (4, 3) = 4! / (4 - 3)! = 24. Note que as 4 combinações de quatro equipas, três a três C (4, 3) = 4! / 3! x (4 - 3)! = 4 podem ser obtidas directamente no triângulo de Pascal, pois cada valor pode ser associado a um determinado tipo de combinação:

Averigúe se é possível associar algum elemento da próxima linha do triângulo de Pascal à seguinte situação problemática: "Sabendo que existem 5 pessoas a pretender jogar matraquilhos, quantas são as combinações possíveis para estarem quatro pessoas a jogar de cada vez?" 

Outro importante exemplo a explorar com este triângulo é a sequência dos números de Fibonacci: 

 

Estando certo de que não esgotei o tema, desafio-o a encontrar outras regularidades ou curiosidades matemáticas afectas a este triângulo.

A título de exemplo poderá explorar as potências de base 2, as potências de base 11, a binomial ou até as capicuas.

Desafio-o, também, a prolongar este triângulo por mais dez linhas, numa folha de cartolina, e estudar os padrões geométricos que resultam ao pintarem-se apenas os múltiplos de 2, ou os múltiplos de 3 ou os de 5.

Se ainda não conhecia este mágico objecto matemático, de nome triângulo de Pascal, ficará, certamente, deliciado com estas variadas e interessantes conexões matemáticas que ele permite estabelecer!

A ludicidade inerente às potências de base dois

Julho 21, 2008

Paulo Afonso

O tema das potências de base dois costuma aparecer implicitamente em algumas tarefas de Matemática Recreativa. Um exemplo interessante a explorar é o que apresento a seguir:

 

Pedir a um colega seu para escolher um número inteiro, de 1 a 31, inclusive, e referir o cartão ou cartões onde esse número se encontra. Depois vai ter que lhe dizer o número secreto que ele escolheu.

 

Levando esta tarefa para contexto de sala de aula, poderemos recorrer ao conceito matemático de que qualquer número inteiro é uma potência de base dois ou uma soma de potências de base dois. Este conceito permite explorar pedagogicamente os cartões acima ilustrados, pois cada um está afecto a uma potência de base dois: O A está afecto ao valor 1, o B está afecto ao valor 2, o C está relacionado com o valor 4, o D está relacionado com o 8 e o E está afecto ao 16 (veja-se em cada cartão o número que está posicionado na quadrícula central da linha de baixo). A título de exemplo, se um interlocutor nosso referir que o número por si escolhido está nos cartões B, C e D, isso significa que escolheu o valor 14, pois 14 = 2 + 4 + 8. Consegue propor outras tarefas envolvendo as potências de base dois?

 

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"