Saltar para: Posts [1], Pesquisa [2]

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

BLOG DE MATEMÁTICA RECREATIVA

Neste Blog pretendo criar um espaço propício à reflexão sobre o tema da Matemática Recreativa. Nele poderemos propor tarefas susceptíveis de poderem ser levadas à sala de aula de Matemática: quebra-cabeças, jogos, enigmas, puzzles, etc.

Explorando o factorial do número

Janeiro 24, 2010

Paulo Afonso

Em Matemática existem alguns tipos de números que, quando colocados em sequência, crescem de uma forma muito rápida, pois o seu padrão de crescimento aponta nesse sentido. Veja-se, por exemplo, a sequência dos números cúbicos: 1, 8, 27, 64, 125, ... ou a sequência das potências de base dois: 1, 2, 4, 8, 16, 32, 64, 128, 256,... Contudo, outras há cujo padrão de crescimento é mais lento, como seja o caso dos números naturais: 1, 2, 3, 4, 5, 6,... ou dos números pares: 2, 4, 6, 8, 10, 12, ...

 

O conjunto de números que apresento a seguir também evidencia crescer muito rapidamente, pois a lei geral que os gera leva a que isso aconteça: 1, 2, 6, 24, 120, 720, 5040, ... Qual o próximo termo da sequência?

 

Talvez influenciados pelo título deste artigo, facilmente poderemos verificar que:

1 = 1

2 = 2 x 1

6 = 3 x 2 x 1

24 = 4 x 3 x 2 x 1

120 = 5 x 4 x 3 x 2 x 1

720 = 6 x 5 x 4 x 3 x 2 x 1

5040 = 7 x 6 x 5 x 4 x 3 x 2 x 1

Continuando este padrão de crescimento, o próximo termo resultará do seguinte produto 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1, isto é, será o número 40320.

 

Sendo assim, facilmente se percebe que estamos perante uma sequência numérica muito especial, que é a que resulta dos factoriais dos números naturais (n!). De facto, 1 = 1!, 2 = 2!, 6 = 3!, 24 = 4!, 120 = 5!, 720 = 6!, 5040 = 7! e, logicamente, 40320 = 8!

 

Tendo em conta esta regularidade, qual o factorial do número 10?

 

Esta questão é facilmente resolvida pelos seguintes cálculos: 10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 3628800.  

 

Este tipo de números revela ser muito importante em vários temas matemáticos, como seja o caso das permutações, das combinações ou dos arranjos.

 

Imaginemos que quatro atletas de salto em altura estão a disputar a final de uma prova muito importante. Sabendo-se que os seus nomes são Artur, Bento, Carlos e Daniel, como pode ser pensada a recepção das medalhas dos três elementos pertencentes ao pódio, isto é, 1º, 2º e 3º lugares? No fundo, pergunta-se como poderá ser formado o pódio?

 

Note-se que um destes quatro atletas não terá acesso ao pódio, pelo que poderemos tentar prever quantas são as combinações possíveis de três dos quatro atletas poderem ser os premiados.

 

Sendo assim, há quatro combinações. Uma delas deixará o Artur de fora do pódio, outra deixará o Bento, uma terceira possibilidade é a que deixa o Carlos excluído e a quarta combinação envolve apenas os atletas Artur, Bento e Carlos, ficando, pois, o Daniel de fora do pódio. Vejamos as quatro combinações possíveis:

 

a - Bento, Carlos e Daniel,

b - Artur, Carlos e Daniel,

c - Artur, Bento e Daniel,

d - Artur, Bento e Carlos.

 

Estas 4 combinações de três atletas resultam da aplicação do respectivo algoritmo aos quatro atletas:

 

4C3 = 4! / (4 - 3)! x 3! = 4 x 3 x 2 x 1 / 1 x 3 x 2 x 1 = 24 / 6 = 4.

 

Realmente, o tema das combinações está associado ao factorial do número. Contudo somente a sua associação ao tema das permutações nos permite encontrar a resposta para o desafio colocado.

 

De facto, note que para o caso em que é o Artur a ficar excluído do pódio há seis possibilidades de o mesmo ser formado:

 

A B C D E F

1º Bento

2º Carlos

3º Daniel

1º Bento

2º Daniel

3º Carlos

1º Carlos

2º Daniel

3º Bento

1º Carlos

2º Bento

3º Daniel

1º Daniel

2º Bento

3º Carlos

1º Daniel

2º Carlos

3º Bento

 

Note-se, pois, que este valor 6 resulta de se permutarem de posição estes 3 atletas. Logo, trata-se de mais um caso de aplicação do factorial do número, pois 6 = 3!

 

Se isto é verdade para o caso de ter sido o Artur (A) a ficar excluído do pódio, também o é para o caso de ter sido o Bento (B), ou o Carlos (C) ou o Daniel (D).

 

Logo, a tabela seguinte evidencia as 24 possibilidades de constituição do pódio, pois 4 x 3! = 4 x 6 = 24:

 

B - C - D B - D - C C - D - B C - B - D D - B - C D - C - B
A - C - D A - D - C C - D - A C - A - D D - A - C D - C - A
A - B - D A - D - B B - D - A  B - A - D D - A - B D - B - A
A - B - C A - C - B B - C - A B - A - C C - A - B C - B - A

 

Em síntese, a resposta para o desafio colocado é esta das 24 possibilidades, que mais não são do que 24 arranjos de quatro atletas, três a três. Logo, conclui-se que os arranjos de quatro atletas, três a três, é o produto das combinações desses quatro atletas, três a três, pelo factorial de três:

 

4A3 = 4C3 x 3! = 4 x 6 = 24

 

Vejamos um novo caso envolvendo o factorial de um número:

 

Tendo em conta os seguintes números: 10, 20, 30, 0, 50, 60, 70, 80, 90, como se poderá obter a soma 100, usando apenas três parcelas não repetidas?

 

Esta tarefa permite que se encontrem os seguintes quatro casos:

a) 70 + 20 + 10

b) 60 + 30 + 10

c) 50 + 40 + 10

d) 50 + 30 + 20

 

Tendo em conta estas quatro decomposições do número 100, será possível converter a figura seguinte num triângulo mágico de soma 100, isto é, poder-se-ão preencher os círculos com os valores envolvidos nestas adições para que a soma em cada lado do triângulo seja sempre 100?:

 

 

 

Este desafio leva a que tentemos testar as quatro somas, três de cada vez, pelo que o tema das combinações volta a estar presente. Uma vez mais, combinando as 4 somas, três a três, obtém-se o valor 4:

 

4C3 = 4! / (4-3)! x 3! = 4 x 3! / 3! = 4

 

Eis as quatro combinações:

1 - a) - b) - c)

2 - a) - b) - d)

3 - a) - c) - d)

4 - b) - c) - d)

 

Testemos caso a caso:

1º caso com as seguintes adições:

a) 70 + 20 + 10               b) 60 + 30 + 10                  c) 50 + 40 + 10

 

Como facilmente se pode constatar, este é um caso de impossibilidade, porque existe uma parcela comum a todas as adições, que é o valor 10. Logo, o mesmo nunca poderia pertencer à figura devido ao facto de, no máximo, um valor apenas poder pertencer a duas adições.

 

Testemos o 2º caso, com as seguintes adições:

a) 70 + 20 + 10         b) 60 + 30 + 10          d) 50 + 30 + 20

 

Note-se que entre a) e b) há apenas um valor comum, que é o 10. Por sua vez, entre a) e d) também só existe um valor comum, que é o 20. Por último, entre b) e d) existe outro valor comum, que é o 30. Logo, serão estes os valores a fazerem parte dos vértices do triângulo, por pertencerem, em simultâneo a duas adições. Os restantes são colocados nos espaços sobrantes, pelo que se consegue obter uma figura mágica de soma 100:

 

 

Testemos, agora, o 3º caso, que contempla as seguintes somas:

a) 70 + 20 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Entre a) e c) existe o valor 10 como sendo o único comum; entre a) e d) existe o valor 20 e entre c) e d) existe o valor 50. Usando-os nos vértices e os restantes nos espaços sobrantes, voltamos a obter um novo caso de sucesso:

 

 

Resta testar o 4º caso, formado pelas seguintes adições:

b) 60 + 30 + 10             c) 50 + 40 + 10             d) 50 + 30 + 20

 

Ora, entre b) e c) existe o valor 10 comum; já entre b) e d) é o valor 30 e entre c) e d) é o valor 50. Testando estes valores, obtém-se um terceiro caso de sucesso, diferente dos dois anteriores:

 

 

Existem, pois, três respostas possíveis para a tarefa enunciada. Uma vez mais, o recuso o factorial do número teve aplicação na resolução da mesma.

 

Se cinco pessoas costumarem viajar todos os dias no mesmo carro, ao fim de quantos dias estará a repetir-se a forma como as mesmas vão sentadas nos cinco lugares desse carro? (nota: todos podem conduzir o carro, mas só mudam de posição ao iniciar um novo dia).

 

Números tetraédricos e conexão ao triângulo de Pascal e ao tema das combinações

Junho 22, 2009

Paulo Afonso

Os números figurados já foram várias vezes objecto de reflexão neste blog. Hoje não vou escrever exclusivamente ao nível da geometria do plano mas, também, ao nível do espaço.

Assim, como actividade de recreação matemática tente dar continuidade à seguinte sequência numérica:

1     4     10     20     ____

Provavelmente descobrirá a relação numérica evidenciada na tabela seguinte:

Números da sequência Sua obtenção
1 1
4 1 + 3
10 1 + 3 + 6
20            1 + 3 + 6 + 10         

Os valores existentes na coluna da direita da tabela permitem concluir que os números da sequência inicial podem ser obtidos através de adições de um determinado tipo de números figurados, os números triangulares (1, 3, 6, 10, etc.).

Tendo em conta que o próximo número triangular é o 15, isso significa que o número que dá continuidade à sequência inicial será o resultado de 1 + 3 + 6 + 10 + 15, isto é, o 35.

Tal como no caso dos números triangulares, o triângulo de Pascal também contempla a sequência numérica aqui proposta:

Esta figura permite confirmar que é o 35 o número que dá continuidade à sequência inicial. Além disto, como a seguir ao 35 surge o 56, isto quererá dizer que o 56 é a soma dos seis primeiros números triangulares (1 + 3 + 6 + 10 + 15 + 21), aliás como confirma o padrão stick do triângulo de Pascal.

Note que com uma forma parecida ao stick de hóquei em patins, qualquer adição envolvendo números triangulares consecutivos origina uma soma que é um número que faz parte da nossa sequência inicial:

Em contexto de sala de aula, além das conexões agora estabelecidas envolvendo esta sequência numérica, será desejável que os alunos descubram o nome deste fascinante conjunto numérico.

As imagens seguintes pretendem ajudar nessa designação:

1 4 10

As imagens anteriores evidenciam a configuração de figuras tetraédricas, pelo que esta sequência numérica deve ser designada como sendo a sequência de números tetraédricos.

Tendo em conta a explanação agora feita, a próxima figura tetraédrica corresponde ao valor 20:

Para além do estabelecimento desta conexão numérica e geométrica, também seria desejável que os alunos pudessem associar estes números ao tema das combinações. Aliás, num artigo anterior associei o triângulo de Pascal às combinações, pelo que é fácil perceber como se obtém cada um destes números por essa via:

 

 

De facto, a lei geral que origina os números tetraédricos assenta nas combinações de "n", três a três, com "n" maior ou igual a 3.

Tendo em conta as reflexões que suportam este texto, como proceder para encontrar o valor do décimo número tetraédrico? Quais os números triangulares sucessivos que lhe darão origem?

 

Informação aos meus leitores: Como entramos em período de férias lectivas, apenas retomarei a escrita neste blog na primeira semana de Setembro de 2009. Até lá limitar-me-ei a publicar alguns comentários que entendam enviar-me, ou responder a algumas dúvidas ou sugestões de temas para o blog.

Agradeço a todos a paciência de lerem os meus escritos, produzidos ao longo deste último ano, que representou mais de 61 mil entradas no blog.

Gostaria de agradecer individualmente a todos que o visitam, desde todo o Portugal e passando por Japão, Angola, Moçambique, Polónia, Brasil, México, Espanha, Perú, Bélgica, República Dominicana, Canadá, EUA, entre outros, e, sobretudo, àqueles que me deixam comentários, sugestões, opiniões, etc.

Um grande abraço para todos e até Setembro!

Actividade numérica com exploração alargada

Junho 15, 2009

Paulo Afonso

Escolher para actividade de recreação matemática tarefas que permitem uma exploração pouco orientada costuma seduzir os resolvedores, pois nunca sabem se o desafio colocado já está totalmente resolvido após algum tempo dedicado à sua exploração.

Actividades deste tipo suscitam, pois, muito envolvimento por parte dos resolvedores.

O exemplo que escolhi para abordar este tema passa por se compararem as duas figuras seguintes e estabelecer o máximo de paralelismos ou semelhanças entre elas:

Uma primeira conclusão poderia ser a que diz respeito ao tipo de números existentes nos círculos. Em ambas as figuras esses números são ímpares e consecutivos. A única diferença a este nível é que a sequência numérica na figura da esquerda começa no 1 e a da figura da direita começa no 3.

Outra semelhança existente entre estas duas figuras é a seguinte: tendo em conta a figura triangular limitada no 1º caso pelos números 1, 7 e 11, a soma das quatro somas existentes no interior de cada triângulo unitário é 70 (9 + 17 + 19 + 25). Por sua vez, tendo em conta a outra figura triangular limitada no 1º caso pelos números 3, 13 e 17, a soma das quatro somas existentes no interior de cada triângulo unitário é 126 (19 + 31 + 35 + 41). Por fim, tendo em conta a outra figura triangular limitada no 1º caso pelos números 5, 15 e 19, a soma das quatro somas existentes no interior de cada triângulo unitário é 150 (25 + 37 + 31 + 47). Observando, agora, a outra figura, as três figuras triangulares respectivas à análise anterior originam somas maiores do que elas em 24 unidades. Vejamos:

A - 15 + 23 + 25 + 31 = 94. Repare-se que 94 = 70 + 24.

B - 25 + 37 + 41 + 47 = 150. Repare-se que 150 = 126 + 24.

C - 31 + 43 + 47 + 53 = 174. Repare-se que 174 = 150 + 24.

Em contexto de sala de aula seria interessante que os alunos conjecturassem que a próxima figura, iniciada pelo número 5, originaria somas maiores que as da 2ª figura, também em 24 unidades.

Eis a figura seguinte:

Vejamos as somas neste caso:

A - 21 + 29 + 31 + 37 = 118.

B - 31 + 43 + 47 + 53 = 174.

C - 37 + 49 + 53 + 59 = 198.

Confirma-se, pois, a conjectura anterior, uma vez que:

A - 118 = 94 + 24.

B - 174 = 150 + 24.

C - 198 = 174 + 24.

As três figuras anteriores permitem a obtenção de algumas conclusões, que apresento na tabela seguinte:

Figura triangular começada no número:
  Soma Menor Soma intermédia Soma maior
1 70 (70 + 0 x 24) 126 ( 126 + 0 x 24) 150 (150 + 0 x 24)
3 94 (70 + 1 x 24) 150 (126 + 1 x 24) 174 (150 + 1 x 24)
5 118 (70 + 2 x 24) 174 (126 + 2 x 24) 198 (150 + 2 x 24)

Tendo em conta os dados da tabela anterior é possível estimar as somas respectivas da próxima figura semelhante a estas, isto é, a que se inicia pelo próximo número ímpar - 7:

  Soma menor Soma intermédia Soma maior
7 70 + 3 x 24 = 142 126 + 3 x 24 = 198 150 + 3 x 24 = 222

A figura seguinte confirma a estimativa acabada de fazer:

De facto:

A - 27 + 35 + 37 + 43 = 142.

B - 37 + 49 + 53 + 59 = 198.

C - 43 + 55 + 59 + 65 = 222.

Confirmadas estas estimativas, seria interessante que os alunos conseguissem definir o termo geral desta regularidade numérica. Assim, para um qualquer número ímpar "n", as leis gerais para cada um dos três casos são as seguintes:

  Soma menor Soma intermédia Soma maior
n 70 + (n - 1) : 2 x 24 126 + (n - 1) : 2 x 24 150 + (n - 1) : 2 x 24

Tendo em conta esta generalização, como proceder para saber rapidamente as somas envolvidas numa nova figura iniciada pelo número ímpar 21? Além disto, quais a maior das nove somas dos triângulos unitários?:

Sequências numéricas em figuras triangulares

Maio 18, 2009

Paulo Afonso

Associar números a figuras geométricas permite a exploração de múltiplas situações de recreação matemática. Observemos o seguinte triângulo numérico, formado por 9 triângulos mais pequenos:

Numa primeira análise, podemos dividir a figura num triângulo e num trapézio isósceles. Além disto, podemos obter esses dois tipos de figuras através de três processos diferentes:

 PROCESSO A:

 

  

PROCESSO B: 


  

PROCESSO C: 

Analisando-se os três processos em simultâneo verificam-se algumas curiosidades matemáticas muito interessantes. Assim: (a) as somas dos números das figuras triangulares são as seguintes:

Processo A - 19

Processo B - 20

processo C - 21

(b) por sua vez, as somas dos números das figuras trapezoidais são as seguintes:

Processo A - 26

Processo B - 25

Processo C - 24

Existem, pois, estas duas regularidades numéricas.

Contudo, a figura inicial, em vez de ser decomposta num triângulo e num trapézio, pode ser dividida em três triângulos geometricamente iguais: 

CASO A CASO B CASO C

Uma vez mais, também agora estamos perante uma regularidade numérica, pois a soma dos números envolvidos no caso A é 19, no caso B é 20 e no caso C é 21. Tinha que ser assim, pois os triângulos da tabela anterior são os mesmos que antes foram separados dos respectivos trapézios isósceles.

Imagine-se, contudo, que o triângulo inicial não era o que deu origem a todas estas análises, mas, sim, este:

Fazendo, agora, a análise apenas através da decomposição em três triângulos, será que continua a haver regularidade numérica?

Vejamos a tabela seguinte: 

CASO A CASO B CASO C

 A soma do caso A é 21, a do caso B é 19 e a do caso C é 20. Estamos, pois, perante os mesmos valores obtidos na situação anterior.

Vejamos uma terceira possibilidade de se distribuírem os números pelos 9 triângulos da figura, bem como a respectiva divisão em três triângulos:

 

CASO A CASO B CASO C

Eis as somas:

Caso A - 20

Caso B - 21

Caso C - 19

Uma vez mais, os valores repetem-se!

Note-se que todos os casos analisados contemplam o 1, o 2 e 3 nos vértices do triângulo maior.

Será que se fizer o estudo para o caso de os números dos vértices serem o 9, o 8 e o 7, também se obtêm regularidades semelhantes?

Sequências numéricas lacunadas

Abril 27, 2009

Paulo Afonso

Ao nível da recreação matemática é vulgar assistirmos à apresentação de sequências numéricas em que nos é solicitado que as continuemos ou que descubramos as leis gerais que, matematicamente, as suportam.

Um exemplo ilustrativo do que acabo de referir é a tarefa seguinte, que visa a descoberta dos números que faltam:

 

36     __     52     60     __

 

Esta tarefa pode ser facilmente resolvida, pois, o par de números 52 e 60 dá-nos a pista de que os números estão dispostos segundo um progressão aritmética de razão 8, com início no valor 36.

Esta constatação permite que associemos a primeira lacuna ao valor 44 e a última ao valor 68, pois, 44 = 36 + 8 e 68 = 60 + 8.

Em situação de sala de aula seria interessante que os alunos descobrissem a lei geral desta sequência numérica, estabelecendo um raciocínio semelhante ao que apresento a seguir:

1º termo             -     36 = 36 + 0 x 8

2º termo             -     44 = 36 + 1 x 8

3º termo             -     52 = 36 + 2 x 8

4º termo             -     60 = 36 + 3 x 8

5º termo             -     68 = 36 + 4 x 8

...

nésimo termo     -     T   = 36 + (n - 1) x 8 

Tendo em conta esta lei geral, facilmente podemos obter um qualquer número desta sequência, pois o valor em causa resulta da adição do número 36 com o produto da posição que esse número ocupa na sequência, menos uma unidade, e o valor 8.

A título de exemplo, o 11º termo desta sequência numérica é o 116, pois 116 = 36 + (11 - 1) x 8.

Analisando um pouco mais esta sequência de números, também se constata que cada um é a soma de oito números consecutivos. Veja-se o caso dos três primeiros números da sequência:

Confirma-se que 36 é o resultado da adição dos oito primeiros números naturais; 44 é a soma de oito números naturais, iniciados pelos valor 2, e o 52 também resulta da adição de oito números naturais, iniciados pelor valor 3.

Tendo em conta este novo padrão ou regularidade, poder-se-ia pensar quais seriam os oito números naturais consecutivos, cuja soma fosse 100:

Ora, igualando a lei geral [36 + (n - 1) x 8] a 100, descobre-se para "n" o valor 9. Logo, o início da sequência numérica será o número 9. De facto, 100 = 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16:

O que acontecerá se os números utilizados forem apenas os números ímpares?

Vejamos os três primeiros exemplos:

Neste caso, a identificação da lei geral dos números envolvidos nas somas passa pelo seguinte raciocínio:

1º termo             -     65 = 64 + 0 x 16

2º termo             -     80 = 64 + 1 x 16

3º termo             -     96 = 64 + 2 x 16  

...

nésimo termo     -     T   = 64 + (n - 1) x 16

Quais serão so oito números naturais ímpares consecutivos cuja soma é 160?:

Experimente fazer, também, um estudo para o caso dos números pares e tire as respectivas conclusões.

Regularidades geométricas e numéricas envolvendo a utilização de fósforos

Março 02, 2009

Paulo Afonso

Como material não estruturado, os fósforos adaptam-se bastante à exploração de múltiplos conceitos matemáticos. Desde a iniciação ao conceito de dezena, com o recurso a um vulgar elástico para a criação de um grupo de dez unidades, até ao estudo de propriedades de várias figuras geométricas, muitas explorações matemáticas podem ser feitas.

De entre alguns autores que têm dedicado alguma atenção a este recurso, destaco Baifang (1995)* e Berloquin (1991)**, por proporem actividades muito interessantes, que apelam ao prazer de se fazer matemática pela via do raciocínio e da ludicidade.

 

* - Baifang, L. (1995). Puzzles com fósforos. LIsboa: Gradiva.

** - Berloquin, P. (1991). 100 jogos geométricos. Lisboa: Gradiva.

 

Para reflexão desta semana decidi associar os fósforos ao tema das regularidades geométricas, com o estabelecimento de conexões às respectivas regularidades de natureza numérica. 

Como actividade de recreação matemática analise a seguinte sequência geométrica e tente estimar o número de fósforos necessários para se obterem 30 quadrados alinhados na horizontal, dando continuidade às seguintes figuras rectangulares: 

Este desafio não representará, certamente, uma grande dificuldade, pois poder-se-á estabelecer facilmente o seguinte raciocínio:

1 quadrado - 4 fósforos

2 quadrados - 7 fósforos

3 quadrados - 10 fósforos

4 quadrados - 13 fósforos, isto é, mais três fósforos do que na construção geométrica anterior. Seguindo este padrão ou regularidade, descobrir-se-á a quantidade de fósforos necessária para a obtenção de 30 quadrados alinhados na horizontal, dando continuidade às figuras rectangulares propostas inicialmente. Esse valor será de 91 fósforos.

Em contexto de sala de aula seria interessante que os alunos pudessem descobrir  a lei geral que suporta esta regularidade numérica de fósforos, associada ao respectivo número de quadrados que formam.

Observe-se, novamente, a quantidade de fósforos envolvida em cada uma das três construções iniciais, e estabeleçamos a respectiva interpretação numérica:

1 quadrado - 4 fósforos (4)

2 quadrados - 7 fósforos (4 + 3)

3 quadrados - 10 fósforos (4 + 3 + 3)

...

n quadrados - [4 + (n - 1 x 3)] = 4 + 3n - 3 = 3n +1

Conclui-se, pois, que para a construção de um determinado número de quadrados (n), e nas mesmas condições enunciadas nesta tarefa, o número de fósforos (f) será igual ao triplo desse número de quadrados mais uma unidade.

Logo, confirma-se que para o caso de 30 quadrados, o número de fósforos envolvidos seria 3 x 30 + 1 = 91.

Uma extensão deste desafio poderia passar pela construção de figuras quadradas, como ilustram os exemplos seguintes:

As três figuras quadradas da tabela permitem a seguinte contagem:

1 quadrado - 4 fósforos

4 quadrados - 12 fósforos

9 quadrados - 24 fósforos

Note-se a seguinte regularidade:

1 quadrado - 1 x 4 fósforos (nº de fósforos relativos à fronteira da figura);

4 quadrados - 2 x 4 fósforos (nº de fósforos relativos à fronteira da figura) + 1 x 2 fósforos (linha vertical do interior) + 1 x 2 fósforos (linha horizontal do interior);

9 quadrados - 3 x 4 fósforos (nº de fósforos relativos à fronteira da figura) + 2 x 3 fósforos (linhas verticais do interior) + 2 x 3 fósforos (linhas horizontais do interior).

Em síntese, temos:

1 quadrado - 1 x 4

4 quadrados - 2 x 4 + 1 x 2 + 1 x 2

9 quadrados - 3 x 4 + 2 x 3 + 2 x 3

...

n quadrados (sempre figura quadrada):

 

Logo, a próxima figura quadrada, formada por 16 quadrados, seria formada por 2 x (4 + 16) = 40 fósforos. Eis a respectiva figura:

 

Outra análise que pode ser feita para estas figuras quadradas pode passar por nos concentrarmos no número de fósforos empregues no lado de cada uma delas. Assim:

1 quadrado (1ª figura) - 4 x 1

4 quadrados (2ª figura) - 4 x 2 + 1 x 2 + 1 x 2

9 quadrados (3ª figura) - 4 x 3 + 2 x 3 + 2 x 3

...

n-ésima figura - 4 x n + (n -1) x n + (n - 1) x n = 4n + 2(n2 - n) = 4n + 2n2 - 2n = 2n2 + 2n = 2n (n + 1).

A título de exemplo, a próxima figura quadrada, com quatro fósforos de lado, necessitará de 2 x 4 (4 + 1) = 40 fósforos. 

Tendo em conta a seguinte nova sequência de figuras triangulares, descubra a lei geral de formação e teste-a para o caso de querer saber o número de fósforos necessários para se construir uma nova figura semelhante a elas, contendo 36 triângulos:

 

Quadrados cercados por números - regularidades mágicas

Fevereiro 16, 2009

Paulo Afonso

Os quadrados mágicos de ordem três (com três linhas e três colunas) ou de ordem quatro (com quatro linhas e quatro colunas) costumam ser muito utilizados em actividades de matemática recreativa.

Em artigos anteriores já tive oportunidade de reflectir sobre algumas estratégias de resolução ao nível deste tipo de figuras.

Com base nisso pretendo tecer, agora, uma nova reflexão acerca de uma adaptação ao tema.

Assim, imagine que num diálogo entre dois irmãos, o mais velho tenha desafiado o outro com a seguinte tarefa: "para que um coelho consiga sair da sua gaiola, de forma quadrada, terás que distribuir os seguintes dezasseis números naturais de modo a que a soma de cada quatro deles existentes em cada uma das paredes da gaiola seja sempre 34. Ao conseguires fazer isso, o coelho estará em condições de poder sair pela porta nº 3 ou pela porta nº 4 para vir comer cenouras no espaço exterior à gaiola. Qual a tua sugestão?"

Esta actividade pode ter várias soluções, de entre as quais apresento as seguintes:

Note que relativamente à figura inicial, as resoluções apresentadas permitem que se conclua que (a) mantendo, no caso da esquerda, os valores extremos das linhas e os valores centrais das colunas, permutando os restantes, ou (b) mantendo, no caso da direita, os valores centrais das linhas e os extremos das colunas, permutando os restantes, o resultado é sempre 34.

Além destas resoluções, a seguinte também é válida:

Uma observação atenta permite visualizar a existência de uma certa distribuição geométrica dos números: (a) 1, 2, 3 e 4 situam-se ao nível das linhas, envolvendo os extremos da de cima e os meios da de baixo, (b) 5, 6, 7 e 8 situam-se ao nível das colunas, envolvendo sempre os valores centrais (c) 9, 10, 11 e 12 também se situam ao nível das colunas, mas envolvendo apenas os valores extremos, (d) 13, 14 15 e 16 voltam a situar-se nas linhas, mas ocupando os lugares que ainda estavam vazios (valores extremos na fila de baixo e valores centrais na fila de cima).

E se os dezasseis números naturais iniciarem no 2 e terminarem no 17, qual será a soma mágica que permite a saída do coelho para o exterior?:

Usando, por exemplo, o critério utilizado na primeira resolução anterior, verifica-se a obtenção de uma nova soma mágica de valor 38:

 

Neste caso, o coelho poderia sair pelas portas contendo o valor 3 e o valor 8.

Em contexto de sala de aula seria interessante que os alunos, para além de descobrirem a existência de uma regularidade entre a soma mágica obtida e os dezasseis números envolvidos na tarefa, descobrissem, também, que a soma mágica coincide com o dobro da soma dos dois valores extremos de cada conjunto dos dezasseis números que estão em jogo.

De facto, no primeiro caso, os valores extremos são o 1 e o 16, cuja soma é 17 e a soma mágica é o dobro deste valor - 34. Por sua vez, neste último caso, os valores extremos são o 2 e o 17, cuja soma é 19 e a soma mágica volta a ser o seu dobro - 38.

Tendo em conta este conjunto de observações e de conclusões, será fácil descobrir os dezasseis números envolvidos numa soma mágica 60, bem como a sua disposição?

 

Conexões numéricas

Setembro 15, 2008

Paulo Afonso

A Matemática é fértil em situações que possibilitam o estabelecimento de várias conexões, seja entre vários dos seus conteúdos, seja com conteúdos de outras ciências ou até mesmo com a realidade do nosso dia a dia. O exemplo que seleccionei para este artigo, com carácter de recreação matemática, fica-se pela própria Matemática.

Imagine-se desafiado a tentar perceber a relação que existe nas seguintes "frases matemáticas", dando continuidade à regularidade, eventualmente, encontrada:  

5 x 1 + 02 5 x 2 + 12 5 x 3 + 22

Provavelmente não terá dúvidas em afirmar que para cada caso estamos na presença de números primos, pois, 5, 11 e 19 são números apenas divisíveis pela unidade e por eles próprios: 

5 x 1 + 02 = 5 5 x 2 + 12 = 11 5 x 3 + 22 = 19

Aliás, ao prolongar-se esta regularidade, confirma-se a obtenção de novos números primos, pois:

5 x 4 + 32 = 29

5 x 5 + 42 = 41

Contudo, nem sempre o nosso pensamento intuitivo nos leva por caminhos matematicamente válidos, pois basta encontrarmos um contra-exemplo para que caia por terra a nossa melhor conjectura!

De facto, basta seguir o padrão anterior e acrescentar-lhe um novo valor para se perceber que o resultado já não faz parte do conjunto dos números primos:

5 x 6 + 52 = 55.

Quem sabe se o seu sentido de observação não o terá levado, antes, a ver os números destacados em negrito como sendo o resultado do produto de dois números consecutivos, subtraído de uma unidade: 

5 = 2 x 3 - 1

11 = 3 x 4 - 1

19 = 4 x 5 - 1

29 = 5 x 6 - 1

41 = 6 x 7 - 1

55 = 7 x 8 - 1

Na perspectiva do conhecimento matemático trata-se de uma boa conclusão, pois, de facto, essa sequência numérica pode resultar da diferença entre o produto de dois números consecutivos e a unidade. Sendo assim, seria fácil propor o próximo número, que seria o resultado de 8 x 9 - 1, isto é, o 71, que, por acaso, volta a ser um número primo.

Contudo, o estabelecimento de relações pode passar, também, por se perceber o sentido do incremento desta sequência numérica. Ora, centrando a nossa atenção nessa sequência:

5     11     19     29     41     55     71     ...

Verificamos que do 1º para o 2º termo há um incremento de 6 unidades. Depois, do 2º para o 3º termo há um incremento de 8 unidades, seguindo-se um incremento de 10 unidades, e assim sucessivamente.

A tabela seguinte ajuda a perceber a passagem do 1º termo para qualquer dos seguintes, evidenciando um nova regularidade: 

Termo Incremento
1º - 5  
2º - 11 5 + 6
3º - 19 5 + 6 x 2 + 2 x 1
4º - 29 5 + 6 x 3 + 2 x 3
5º - 41 5 + 6 x 4 + 2 x 6
6º - 55 5 + 6 x 5 + 2 x 10

Confirma-se que o próximo termo, 71, resultará de 5 + 6 x 6 + 2 x 15. Analisando-se a coluna respeitante ao incremento a partir do 1º termo da sequência, destaca-se o facto de um dos factores da última múltiplicação em cada linha ser um número triangular (1, 3, 6 , 10, 15,...), cuja lei geral que os origina é a seguinte: (n2 + n) : 2.

Logo, daqui resulta fácil a construção da lei geral que origina a sequência dos números em análise, que será: 5 + 6 (n -1) + 2 x [(n -2)2 + (n - 2)] : 2.

Vimos, pois, que esta sequência de números, como tantas outras que poderíamos analisar, permite o estabelecimento de conexões muito interessantes entre vários conceitos matemáticos, como sejam os números primos, os números sucessivos ou, ainda, as potências de expoente dois ou os números quadrados e o conceito de raiz quadrada.

Analise-se a relação entre a sequência dada e estas novas frases matemáticas:

5 1 x 2 x 3 x 4 + 1
11 2 x 3 x 4 x 5 + 1
19 3 x 4 x 5 x 6 + 1

 Que ilações consegue retirar a partir dos valores da tabela? Dê continuidade a ambas as colunas!

Sequências mágicas

Setembro 05, 2008

Paulo Afonso

Em Matemática Recreativa as sequências numéricas suscitam actividades muito motivadoras quando associadas a determinadas disposições geométricas. Este tipo de conexão matemática podemos encontrá-la em múltiplas publicações da especialidade, como seja o magnífico livro de Brian Bolt (1996)*. Vejamos o seguinte exemplo que adaptamos dessa obra:

Colocar na figura seguinte os algarismos de 1 a 8, de modo a que a soma em cada linha e em cada coluna seja sempre a mesma:

 

Por tentativa e erro, esta tarefa poderia ser resolvida da seguinte forma, não esgotando, contudo, todas as possibilidades que existem:

Como explicação teórica sabemos que cada uma das quatro somas (S) é sempre a mesma, isto é, a + b + c = e + d + h = f + e + b = g + c + d. Logo, também sabemos que:

4S = a + b + c + e + d + h + f + e + b + g + c + d, isto é,

4S = a + 2b + 2c + 2d + 2e + f + g + h, ou

4S = (b + c + d + e) + (a + b + c + d + e + f + g + h)

Por outro lado sabemos que a + b + c + d + e + f + g + h = 36, logo:

4S = b + c + d + e + 36

Sabemos ainda que no mínimo b + c + d + e = 10 e no máximo será 26.

Logo, 4S estará compreendido entre 10 + 36 e 26 + 36, isto é, entre 46 e 62. Daqui podemos concluir que S estará entre 12 e 15.

Admitindo que S possa ser 12, sabe-se que b + c + d + e = 4 x 12 - 36, isto é, b + c + d + e = 12.

Sabemos também que a + b + c + e + d + h = 24. Logo, a + h = 24 - 12 = 12. Por sua vez, g + f = 12. Com base nestas conclusões torna-se fácil apresentar a solução aqui ilustrada.

Consegue fazer os estudos respectivos para as somas 13, 14 e 15?

* - Bolt. Brian (1996). Puzzles de Matemática. Lisboa: Terramar.

Esta interessante tarefa permite várias extensões, de entre as quais destaco o estudo semelhante para o caso de os oito números envolvidos serem os seguintes: 5, 6, 7, 8, 9, 10, 11 e 12.

Será que a soma mínima é 24, como mostro na figura seguinte? Haverás mais somas? Quantas?

Outra extensão possível é tentar distribuir os oitos números originais, de modo que as quatro somas sejam quatro números inteiros consecutivos.

Um caso possível é da figura seguinte, contudo o desafio é o de se investigar se existem mais casos como este, isto é, envolvendo quatro somas consecutivas, diferentes destas ou, então, que configurem uma progressão aritmética de razão 2.

Apenas deixo a pista de se analisar os quatro números colocados nas quadrículas a, f, g e h. De que números se tratam?

Potências e padrões numéricos

Setembro 04, 2008

Paulo Afonso

O tema das potências de expoente natural é um dos temas propícios a adoptar em actividades de Matemática Recreativa. Por um lado permitem várias conexões a temas do quotidiano e permitem, por outro lado, a realização de investigações interessantes ao nível dos padrões de natureza numérica. Veja-se o seguinte caso:

De uma forma rápida, encontre a soma seguinte, que dê continuidade ao padrão numérico das somas apresentadas, resultantes da adição de várias potências de base 2:

1 + 2 =                                                                       3

1 + 2 + 4 =                                                                 7

1 + 2 + 4 + 8 =                                                         15

..... =                                                                           ?

Uma resposta possível ao desafio colocado podia passar pela escrita da próxima sequência, efectuando-se a respectiva soma:

1 + 2 + 4 + 8 + 16 =                                                  31

Contudo, ao nível da sala de aula de matemática, este desafio poderia ser utilizado para que os alunos pudessem propor uma estratégia de resolução matematicamente mais elegante, passando pela descoberta da regra que atravessa todos estes casos. Seria interessante que os alunos pudessem descobrir que a soma para cada sequência apresentada passa pela descoberta do próximo termo, subtraindo-se uma unidade.

Note que se a sequência envolver as potências de base 3, o critério é ligeiramente diferente:

1 + 3 =                                                                        4

1 + 3 + 9 =                                                                13

1 + 3 + 9 + 27 =                                                        40

... =                                                                              ?

No caso vertente, a estratégia de resolução passa pela identificação do termo seguinte, subtraindo-se uma unidade a esse valor e calculando-se a metade deste valor final.

E no caso das potências de base 4 ou no caso das potências de base 5? Qual a estratégia adequada para a descoberta rápida de uma qualquer soma envolvendo potências consecutivas?

Potência de base 4 Potências de base 5
1 + 4 = 5 1 + 5 = 6 
1 + 4 + 16 = 21 1 + 5 + 25 = 31 
1 + 4 + 16 + 64 = 85 1 + 5 + 25 + 125 = 165
... =  ? ... = ?

 

Mais sobre mim

foto do autor

Subscrever por e-mail

A subscrição é anónima e gera, no máximo, um e-mail por dia.

Arquivo

  1. 2013
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2012
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2011
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2010
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2009
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D
  1. 2008
  2. J
  3. F
  4. M
  5. A
  6. M
  7. J
  8. J
  9. A
  10. S
  11. O
  12. N
  13. D

Este Blog é membro do União de Blogs de Matemática


"